1
|
Laidou S, Alanis-Lobato G, Pribyl J, Raskó T, Tichy B, Mikulasek K, Tsagiopoulou M, Oppelt J, Kastrinaki G, Lefaki M, Singh M, Zink A, Chondrogianni N, Psomopoulos F, Prigione A, Ivics Z, Pospisilova S, Skladal P, Izsvák Z, Andrade-Navarro MA, Petrakis S. Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery. Redox Biol 2020; 32:101458. [PMID: 32145456 PMCID: PMC7058924 DOI: 10.1016/j.redox.2020.101458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expression of the mutant protein. We characterized the structure and the protein composition of insoluble polyQ IIBs which gradually occupy the nuclei and are responsible for the generation of reactive oxygen species. In response to their formation, our transcriptome analysis reveals a cerebellum-specific perturbed protein interaction network, primarily affecting protein synthesis. We propose that insoluble polyQ IIBs cause oxidative and nucleolar stress and affect the assembly of the ribosome by capturing or down-regulating essential components. The inducible cell system can be utilized to decipher the cellular consequences of polyQ protein aggregation. Our strategy provides a broadly applicable methodology for studying polyQ diseases.
Collapse
Affiliation(s)
- Stamatia Laidou
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
| | - Gregorio Alanis-Lobato
- Faculty of Biology, Johannes Gutenberg University Mainz, 55122, Mainz, Germany; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Jan Pribyl
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Tamás Raskó
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Kamil Mikulasek
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Maria Tsagiopoulou
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Georgia Kastrinaki
- Aerosol and Particle Technology Laboratory/Chemical Process & Energy Resources Institute/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
| | - Maria Lefaki
- Institute of Biology, Medicinal Chemistry & Biotechnology/National Hellenic Research Foundation, 11365, Athens, Greece
| | - Manvendra Singh
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
| | - Annika Zink
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry & Biotechnology/National Hellenic Research Foundation, 11365, Athens, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece; Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Alessandro Prigione
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Petr Skladal
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Zsuzsanna Izsvák
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany.
| | | | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece.
| |
Collapse
|
2
|
Moreno M, Vázquez L, López-Carrasco A, Martín-Gago J, Flores R, Briones C. Direct visualization of the native structure of viroid RNAs at single-molecule resolution by atomic force microscopy. RNA Biol 2019; 16:295-308. [PMID: 30734641 PMCID: PMC6380281 DOI: 10.1080/15476286.2019.1572436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/11/2018] [Accepted: 01/17/2019] [Indexed: 11/01/2022] Open
Abstract
Viroids are small infectious, non-protein-coding circular RNAs that replicate independently and, in some cases, incite diseases in plants. They are classified into two families: Pospiviroidae, composed of species that have a central conserved region (CCR) and replicate in the cell nucleus, and Avsunviroidae, containing species that lack a CCR and whose multimeric replicative intermediates of either polarity generated in plastids self-cleave through hammerhead ribozymes. The compact, rod-like or branched, secondary structures of viroid RNAs have been predicted by RNA folding algorithms and further examined using different in vitro and in vivo experimental techniques. However, direct data about their native tertiary structure remain scarce. Here we have applied atomic force microscopy (AFM) to image at single-molecule resolution different variant RNAs of three representative viroids: potato spindle tuber viroid (PSTVd, family Pospiviroidae), peach latent mosaic viroid and eggplant latent viroid (PLMVd and ELVd, family Avsunviroidae). Our results provide a direct visualization of their native, three-dimensional conformations at 0 and 4 mM Mg2+ and highlight the role that some elements of tertiary structure play in their stabilization. The AFM images show that addition of 4 mM Mg2+ to the folding buffer results in a size contraction in PSTVd and ELVd, as well as in PLMVd when the kissing-loop interaction that stabilizes its 3D structure is preserved.
Collapse
Affiliation(s)
- M. Moreno
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - L. Vázquez
- Departamento de Superficies y Recubrimientos, Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid, Spain
| | - A. López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - J.A. Martín-Gago
- Departamento de Superficies y Recubrimientos, Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid, Spain
| | - R. Flores
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - C. Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| |
Collapse
|
3
|
Schön P. Atomic force microscopy of RNA: State of the art and recent advancements. Semin Cell Dev Biol 2017; 73:209-219. [PMID: 28843977 DOI: 10.1016/j.semcdb.2017.08.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022]
Abstract
The atomic force microscope (AFM) has become a powerful tool for the visualization, probing and manipulation of RNA at the single molecule level. AFM measurements can be carried out in buffer solution in a physiological medium, which is crucial to study the structure and function of biomolecules, also allowing studying them at work. Imaging the specimen in its native state is a great advantage compared to other high resolution methods such as electron microscopy and X-ray diffraction. There is no need to stain, freeze or crystallize biological samples. Moreover, compared to NMR spectroscopy for instance, for AFM studies the size of the biomolecules is not limiting. Consequently the AFM allows one also to investigate larger RNA molecules. In particular, structural studies of nucleic acids and assemblies thereof, have been carried out by AFM routinely including ssRNA, dsRNA and nucleoprotein complexes thereof, as well as RNA aggregates and 2D RNA assemblies. These are becoming increasingly important as novel unique building blocks in the emerging field of RNA nanotechnology. In particular by AFM unique information can be obtained on these RNA based assemblies. Moreover, the AFM is of fundamental relevance to study biological relevant RNA interactions and dynamics. In this short review a brief overview will be given on structural studies that have been done related to AFM topographic imaging of RNA, RNA assemblies and aggregates. Finally, an overview on AFM beyond imaging will be provided. This includes force spectroscopy of RNA under physiological conditions in aqueous buffer to probe RNA interaction with proteins and ligands as well as other AFM tip based RNA probing. Important applications include the detection and quantification of RNA in biological samples. A selection of recent highlights and breakthroughs will be provided related to structural and functional studies by AFM. The main intention of this short review to provide the reader with a flavor of what AFM is able to contribute to RNA research and engineering.
Collapse
Affiliation(s)
- Peter Schön
- NanoBioInterface Research Group, Research Center Design and Technology, Saxion University of Applied Sciences, 7500 KB Enschede, The Netherlands; Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
4
|
Hizume K, Kominami H, Kobayashi K, Yamada H, Araki H. Flexible DNA Path in the MCM Double Hexamer Loaded on DNA. Biochemistry 2017; 56:2435-2445. [DOI: 10.1021/acs.biochem.6b00922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kohji Hizume
- Division
of Microbial Genetics, National Institute of Genetics, Mishima 411-8540, Japan
- Department
of Genetics, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Hiroaki Kominami
- Department
of Electronic Science and Engineering, Kyoto University, Kyoto University
Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Kei Kobayashi
- Department
of Electronic Science and Engineering, Kyoto University, Kyoto University
Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hirofumi Yamada
- Department
of Electronic Science and Engineering, Kyoto University, Kyoto University
Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hiroyuki Araki
- Division
of Microbial Genetics, National Institute of Genetics, Mishima 411-8540, Japan
- Department
of Genetics, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| |
Collapse
|