1
|
Shan Z, Li S, Yu C, Bai S, Zhang J, Tang Y, Wang Y, Irwin DM, Li J, Wang Z. Embryonic and skeletal development of the albino African clawed frog (Xenopus laevis). J Anat 2023; 242:1051-1066. [PMID: 36708289 PMCID: PMC10184547 DOI: 10.1111/joa.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
The normal stages of embryonic development for wild-type Xenopus laevis were established by Nieuwkoop and Faber in 1956, a milestone in the history of understanding embryonic development. However, this work lacked photographic images and staining for skeleton structures from the corresponding stages. Here, we provide high-quality images of embryonic morphology and skeleton development to facilitate studies on amphibian development. On the basis of the classical work, we selected the albino mutant of X. laevis as the observation material to restudy embryonic development in this species. The lower level of pigmentation makes it easier to interpret histochemical experiments. At 23°C, albino embryos develop at the same rate as wild-type embryos, which can be divided into 66 stages as they develop into adults in about 58 days. We described the complete embryonic development system for X. laevis, supplemented with pictures of limb and skeleton development that are missing from previous studies, and summarized the characteristics and laws of limb and skeleton development. Our study should aid research into the development of X. laevis and the evolution of amphibians.
Collapse
Affiliation(s)
- Zhixin Shan
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Shanshan Li
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Chenghua Yu
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Shibin Bai
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Junpeng Zhang
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Yining Tang
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Yutong Wang
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - David M. Irwin
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Jun Li
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Zhe Wang
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
2
|
Maccarana M, Tykesson E, Pera EM, Gouignard N, Fang J, Malmström A, Ghiselli G, Li JP. Inhibition of iduronic acid biosynthesis by ebselen reduces glycosaminoglycan accumulation in mucopolysaccharidosis type I fibroblasts. Glycobiology 2021; 31:1319-1329. [PMID: 34192316 PMCID: PMC8600295 DOI: 10.1093/glycob/cwab066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS-I) is a rare lysosomal storage disorder caused by deficiency of the enzyme alpha-L-iduronidase, which removes iduronic acid in both chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) and thereby contributes to the catabolism of glycosaminoglycans (GAGs). To ameliorate this genetic defect, the patients are currently treated by enzyme replacement and bone marrow transplantation, which have a number of drawbacks. This study was designed to develop an alternative treatment by inhibition of iduronic acid formation. By screening the Prestwick drug library, we identified ebselen as a potent inhibitor of enzymes that produce iduronic acid in CS/DS and HS. Ebselen efficiently inhibited iduronic acid formation during CS/DS synthesis in cultured fibroblasts. Treatment of MPS-I fibroblasts with ebselen not only reduced accumulation of CS/DS but also promoted GAG degradation. In early Xenopus embryos, this drug phenocopied the effect of downregulation of DS-epimerase 1, the main enzyme responsible for iduronic production in CS/DS, suggesting that ebselen inhibits iduronic acid production in vivo. However, ebselen failed to ameliorate the CS/DS and GAG burden in MPS-I mice. Nevertheless, the results propose a potential of iduronic acid substrate reduction therapy for MPS-I patients.
Collapse
Affiliation(s)
- Marco Maccarana
- Department of Medical Biochemistry and Microbiology, BMC B11, Uppsala University, Husargatan 3 Box 582 751 23 Uppsala, Sweden
- Department of Experimental Medical Science, BMC C12, Lund University, BMC H11, 221 84 Lund, Sweden
| | - Emil Tykesson
- Department of Experimental Medical Science, BMC C12, Lund University, BMC H11, 221 84 Lund, Sweden
| | - Edgar M Pera
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, BMC H11, 221 84 Lund, Sweden
| | - Nadège Gouignard
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, BMC H11, 221 84 Lund, Sweden
| | - Jianping Fang
- GlycoNovo Technologies Co., Ltd., Shanghai 201203, China
| | - Anders Malmström
- Department of Experimental Medical Science, BMC C12, Lund University, BMC H11, 221 84 Lund, Sweden
| | - Giancarlo Ghiselli
- Glyconova Srl, Parco Scientifico Silvano Fumero, Bioindustry Park Silvano Fumero S.p.A Via Ribes, 5 - 10010 - Colleretto Giacosa (TO), Italy
| | - Jin-ping Li
- Department of Medical Biochemistry and Microbiology, BMC B11, Uppsala University, Husargatan 3 Box 582 751 23 Uppsala, Sweden
| |
Collapse
|
3
|
Gouignard N, Maccarana M, Strate I, von Stedingk K, Malmström A, Pera EM. Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin. Dis Model Mech 2016; 9:607-20. [PMID: 27101845 PMCID: PMC4920151 DOI: 10.1242/dmm.024661] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC). Musculocontractural Ehlers-Danlos syndrome (MCEDS) is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS) biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE). Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS)/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial-mesenchymal transition (EMT) and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and metastasis in neuroblastoma and malignant melanoma suggest an association between DS and NC-derived cancers.
Collapse
Affiliation(s)
- Nadège Gouignard
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Marco Maccarana
- Department of Experimental Medical Science, Lund University, Lund 221 84, Sweden
| | - Ina Strate
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | | | - Anders Malmström
- Department of Experimental Medical Science, Lund University, Lund 221 84, Sweden
| | - Edgar M Pera
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| |
Collapse
|
4
|
Acosta H, Iliev D, Grahn THM, Gouignard N, Maccarana M, Griesbach J, Herzmann S, Sagha M, Climent M, Pera EM. The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. Development 2015; 142:1146-58. [PMID: 25758225 DOI: 10.1242/dev.113886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Germ layer formation and primary axis development rely on Fibroblast growth factors (FGFs). In Xenopus, the secreted serine protease HtrA1 induces mesoderm and posterior trunk/tail structures by facilitating the spread of FGF signals. Here, we show that the serpin Protease nexin-1 (PN1) is transcriptionally activated by FGF signals, suppresses mesoderm and promotes head development in mRNA-injected embryos. An antisense morpholino oligonucleotide against PN1 has the opposite effect and inhibits ectodermal fate. However, ectoderm and anterior head structures can be restored in PN1-depleted embryos when HtrA1 and FGF receptor activities are diminished, indicating that FGF signals negatively regulate their formation. We show that PN1 binds to and inhibits HtrA1, prevents degradation of the proteoglycan Syndecan 4 and restricts paracrine FGF/Erk signaling. Our data suggest that PN1 is a negative-feedback regulator of FGF signaling and has important roles in ectoderm and head development.
Collapse
Affiliation(s)
- Helena Acosta
- Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Dobromir Iliev
- Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | | | | | - Marco Maccarana
- Department of Experimental Medical Science, Lund University, Lund 221 84, Sweden
| | | | | | - Mohsen Sagha
- Lund Stem Cell Center, Lund University, Lund 221 84, Sweden Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil 56189-53141, Iran
| | - Maria Climent
- Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Edgar M Pera
- Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| |
Collapse
|