1
|
Li M, Wu L, Chen M, Dong Y, Zheng L, Chen D, Qiao Y, Ke Z, Shi X. Co-activation of Caspase-1 and Caspase-8 in CMV-induced SGN death by inflammasome-associated pyroptosis and apoptosis. Int Immunopharmacol 2022; 113:109305. [PMID: 36244217 DOI: 10.1016/j.intimp.2022.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
2
|
Xia W, Yan H, Zhang Y, Wang C, Gao W, Lv C, Wang W, Liu Z. Congenital Human Cytomegalovirus Infection Inducing Sensorineural Hearing Loss. Front Microbiol 2021; 12:649690. [PMID: 33936007 PMCID: PMC8079719 DOI: 10.3389/fmicb.2021.649690] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the primary cause of congenital infections. Despite its clinical significance, congenital HCMV infection is frequently overlooked clinically since most affected infants are asymptomatic. Sensorineural hearing loss (SNHL) is one of the most widely known disorders caused by congenital HCMV infection. The potential mechanism, however, remains unknown to date. The mechanism by which congenital HCMV infection induces sensorineural deafness has been partly characterized, leading to advancements in diagnosis, therapy, and prevention strategies. HCMV-induced hearing loss primarily involves immune responses, the release of inflammatory factors by natural killer (NK) cells, apoptosis of cochlear spiral ganglion, and potential changes due to vascular dysfunction. The diagnosis of HCMV induced SNHL includes serological examination to mothers, imaging, and amniotic fluid examination. Ganciclovir, mainly used for antiviral therapy and behavioral prevention, can, to some degree, prevent congenital HCMV infection. The role of HCMV infection in hearing loss needs further investigation since the mechanism of hearing loss caused by cytomegalovirus infection is not well understood. Although some advancement has been made in diagnosing and treating SNHL, more improvement is needed. A comprehensive understanding of cytomegalovirus’s pathogenesis is of key importance for preventing, diagnosing, and treating SNHL.
Collapse
Affiliation(s)
- Wenwen Xia
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Hui Yan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yiyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Congcong Wang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Wei Gao
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Changning Lv
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Wentao Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| |
Collapse
|
3
|
Potential Therapeutic Approaches Against Brain Diseases Associated with Cytomegalovirus Infections. Int J Mol Sci 2020; 21:ijms21041376. [PMID: 32085671 PMCID: PMC7073089 DOI: 10.3390/ijms21041376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/29/2020] [Accepted: 02/15/2020] [Indexed: 11/28/2022] Open
Abstract
Cytomegalovirus (CMV) is one of the major human health threats worldwide, especially for immunologically comprised patients. CMV may cause opportunistic infections, congenital infections, and brain diseases (e.g., mental retardation and glioblastoma). The etiology of brain diseases associated with human CMV (HCMV) infections is usually complex and it is particularly difficult to treat because HCMV has a life-long infection in its hosts, high mutation rate, and latent infections. Moreover, it is almost impossible to eradicate latent viruses in humans. Although there has been progress in drug discovery recently, current drugs used for treating active CMV infections are still limited in efficacy due to side effects, toxicity, and viral resistance. Fortunately, letermovir which targets the HCMV terminase complex rather than DNA polymerase with fewer adverse reactions has been approved to treat CMV infections in humans. The researchers are focusing on developing approaches against both productive and latent infections of CMV. The gene or RNA targeting approaches including the external guide sequences (EGSs)-RNase, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and transcription activator-like effector nucleases (TALENs) are being investigated to remove acute and/or latent CMV infections. For the treatment of glioblastoma, vaccine therapy through targeting specific CMV antigens has improved patients’ survival outcomes significantly and immunotherapy has also emerged as an alternative modality. The advanced research for developing anti-CMV agents and approaches is promising to obtain significant outcomes and expecting to have a great impact on the therapy of brain diseases associated with CMV infections.
Collapse
|
4
|
Noroozi-aghideh A, Kheirandish M. Human cord blood-derived viral pathogens as the potential threats to the hematopoietic stem cell transplantation safety: A mini review. World J Stem Cells 2019; 11:73-83. [PMID: 30842806 PMCID: PMC6397803 DOI: 10.4252/wjsc.v11.i2.73] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) and potential alternative for bone marrow transplantation for patients who lack human leukocyte antigen (HLA)-matched donors. The main practical advantages of UCB over other HSC sources are the immediate availability, lower incidence of graft-versus-host disease, minimal risk to the donor, and lower requirement for HLA compatibility. However, the use of UCB is limited by delayed engraftment and poor immune reconstitution, leading to a high rate of infection-related mortality. Therefore, severe infectious complications, especially due to viral pathogens remain the leading cause of morbidity and mortality during the post-UCB transplantation (UCBT) period. In this context, careful screening and excluding the viral-contaminated UCB units might be an effective policy to reduce the rate of UCBT-related infection and mortality. Taken together, complete prevention of the transmission of donor-derived viral pathogens in stem cell transplantation is not possible. However, having the knowledge of the transmission route and prevalence of viruses will improve the safety of transplantation. To the best of our knowledge, there are few studies that focused on the risk of virus transmission through the UCB transplant compared to other HSC sources. This review summarizes the general aspects concerning the prevalence, characteristics, and risk factors of viral infections with a focus on the impact of viral pathogens on cord blood transplantation safety.
Collapse
Affiliation(s)
- Ali Noroozi-aghideh
- Department of Hematology, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran 14665-1157, Iran
| | - Maryam Kheirandish
- Immunology Department, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine (IBTO), Tehran 14665-1157, Iran
| |
Collapse
|
5
|
Efficient Delivery of Human Cytomegalovirus T Cell Antigens by Attenuated Sendai Virus Vectors. J Virol 2018; 92:JVI.00569-18. [PMID: 29769344 DOI: 10.1128/jvi.00569-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) represents a major cause of clinical complications during pregnancy as well as immunosuppression, and the licensing of a protective HCMV vaccine remains an unmet global need. Here, we designed and validated novel Sendai virus (SeV) vectors delivering the T cell immunogens IE-1 and pp65. To enhance vector safety, we used a replication-deficient strain (rdSeV) that infects target cells in a nonproductive manner while retaining viral gene expression. In this study, we explored the impact that transduction with rdSeV has on human dendritic cells (DCs) by comparing it to the parental, replication-competent Sendai virus strain (rcSeV) as well as the poxvirus strain modified vaccinia Ankara (MVA). We found that wild-type SeV is capable of replicating to high titers in DCs while rdSeV infects cells abortively. Due to the higher degree of attenuation, IE-1 and pp65 protein levels mediated by rdSeV after infection of DCs were markedly reduced compared to those of the parental Sendai virus recombinants, but antigen-specific restimulation of T cell clones was not negatively affected by this. Importantly, rdSeV showed reduced cytotoxic effects compared to rcSeV and MVA and was capable of mediating DC maturation as well as secretion of alpha interferon and interleukin-6. Finally, in a challenge model with a murine cytomegalovirus (MCMV) strain carrying an HCMV pp65 peptide, we found that viral replication was restricted if mice were previously vaccinated with rdSeV-pp65. Taken together, these data demonstrate that rdSeV has great potential as a vector system for the delivery of HCMV immunogens.IMPORTANCE HCMV is a highly prevalent betaherpesvirus that establishes lifelong latency after primary infection. Congenital HCMV infection is the most common viral complication in newborns, causing a number of late sequelae ranging from impaired hearing to mental retardation. At the same time, managing HCMV reactivation during immunosuppression remains a major hurdle in posttransplant care. Since options for the treatment of HCMV infection are still limited, the development of a vaccine to confine HCMV-related morbidities is urgently needed. We generated new vaccine candidates in which the main targets of T cell immunity during natural HCMV infection, IE-1 and pp65, are delivered by a replication-deficient, Sendai virus-based vector system. In addition to classical prophylactic vaccine concepts, these vectors could also be used for therapeutic applications, thereby expanding preexisting immunity in high-risk groups such as transplant recipients or for immunotherapy of glioblastomas expressing HCMV antigens.
Collapse
|
6
|
Schleiss MR, Permar SR, Plotkin SA. Progress toward Development of a Vaccine against Congenital Cytomegalovirus Infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00268-17. [PMID: 29046308 PMCID: PMC5717185 DOI: 10.1128/cvi.00268-17] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A vaccine against congenital human cytomegalovirus (CMV) infection is a major public health priority. Congenital CMV causes substantial long-term morbidity, particularly sensorineural hearing loss (SNHL), in newborns, and the public health impact of this infection on maternal and child health is underrecognized. Although progress toward development of a vaccine has been limited by an incomplete understanding of the correlates of protective immunity for the fetus, knowledge about some of the key components of the maternal immune response necessary for preventing transplacental transmission is accumulating. Moreover, although there have been concerns raised about observations indicating that maternal seropositivity does not fully prevent recurrent maternal CMV infections during pregnancy, it is becoming increasing clear that preconception immunity does confer some measure of protection against both CMV transmission and CMV disease (if transmission occurs) in the newborn infant. Although the immunity to CMV conferred by both infection and vaccination is imperfect, there are encouraging data emerging from clinical trials demonstrating the immunogenicity and potential efficacy of candidate CMV vaccines. In the face of the knowledge that between 20,000 and 30,000 infants are born with congenital CMV in the United States every year, there is an urgent and compelling need to accelerate the pace of vaccine trials. In this minireview, we summarize the status of CMV vaccines in clinical trials and provide a perspective on what would be required for a CMV immunization program to become incorporated into clinical practice.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Minneapolis, Minnesota, USA
| | - Sallie R Permar
- Duke University Medical School, Human Vaccine Institute, Department of Pediatrics, Durham, North Carolina, USA
| | - Stanley A Plotkin
- University of Pennsylvania, Vaxconsult, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Oncogenic role of cytomegalovirus in medulloblastoma? Cancer Lett 2017; 408:55-59. [PMID: 28844716 DOI: 10.1016/j.canlet.2017.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/12/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022]
Abstract
Medulloblastoma is the most common solid tumor among children. Current therapeutic strategies for this malignancy include surgical resection, radiation therapy and chemotherapy. However, these treatments are accompanied with serious side effects such as neurological complications and psychosocial problems, due to the severity of treatment on the developing nervous system. To solve this problem, novel therapeutic approaches are currently being investigated. One of them is targeting human cytomegalovirus in medulloblastoma cancer cells. However, this approach is still under debate, since the presence of cytomegalovirus in medulloblastomas remains controversial. In this review, we discuss the current controversies on the role of cytomegalovirus in medulloblastoma oncogenesis and the potential of cytomegalovirus as a novel (immuno)therapeutic target.
Collapse
|
8
|
Hoteit R, Fermanian P, Abbas F, Abdel Khalek R, Mahfouz R. Comparison of the Artus RotorGene and COBAS Ampliprep/COBAS TaqMan Platforms for the Detection of Cytomegalovirus: Experience of a Tertiary Care Center. Genet Test Mol Biomarkers 2016; 20:167-9. [PMID: 26841255 DOI: 10.1089/gtmb.2015.0284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a member of the Herpesviruses family. CMV infection rarely causes serious disease in otherwise healthy individuals, however, infection/reactivation among immunocompromised patients, including those undergoing hematopoietic stem cell transplantation (HSCT), can be critical and is associated with high rates of morbidity and mortality. The detection of CMV in blood using real-time polymerase chain reaction (qPCR) methods is the most sensitive and specific technique providing for a well-determined preemptive treatment cutoff. AIM This study compares the performance of two new CMV qPCR platforms, COBAS(®) Ampliprep/COBAS(®) TaqMan(®) (Roche Molecular Diagnostics) and Artus RotorGene (QIAGEN). METHODS A total of 99 patients referred for CMV testing at AUBMC were tested using the Artus CMV RG PCR kit and the COBAS AmpliPrep/COBAS TaqMan CMV kit as per the manufacturers' recommendations. RESULTS The difference between the two methods was within the allowable error for 97 out of 99 specimens (98%), with a correlation coefficient r = 0.80. CONCLUSION The Artus CMV RG PCR Kit and the COBAS AmpliPrep/COBAS TaqMan CMV kit are both acceptable assays that can be used for the sensitive detection and quantitation of CMV mainly in peripheral blood specimens.
Collapse
Affiliation(s)
- Rouba Hoteit
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center (AUBMC) , Beirut, Lebanon
| | - Puzant Fermanian
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center (AUBMC) , Beirut, Lebanon
| | - Fatmeh Abbas
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center (AUBMC) , Beirut, Lebanon
| | - Rabab Abdel Khalek
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center (AUBMC) , Beirut, Lebanon
| | - Rami Mahfouz
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center (AUBMC) , Beirut, Lebanon
| |
Collapse
|