1
|
Arroyo M, Casas-Delucchi C, Pabba M, Prorok P, Pradhan S, Rausch C, Lehmkuhl A, Maiser A, Buschbeck M, Pasque V, Bernstein E, Luck K, Cardoso M. Histone variant macroH2A1 regulates synchronous firing of replication origins in the inactive X chromosome. Nucleic Acids Res 2024; 52:11659-11688. [PMID: 39189450 PMCID: PMC11514477 DOI: 10.1093/nar/gkae734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
MacroH2A has been linked to transcriptional silencing, cell identity, and is a hallmark of the inactive X chromosome (Xi). However, it remains unclear whether macroH2A plays a role in DNA replication. Using knockdown/knockout cells for each macroH2A isoform, we show that macroH2A-containing nucleosomes slow down replication progression rate in the Xi reflecting the higher nucleosome stability. Moreover, macroH2A1, but not macroH2A2, regulates the number of nano replication foci in the Xi, and macroH2A1 downregulation increases DNA loop sizes corresponding to replicons. This relates to macroH2A1 regulating replicative helicase loading during G1 by interacting with it. We mapped this interaction to a phenylalanine in macroH2A1 that is not conserved in macroH2A2 and the C-terminus of Mcm3 helicase subunit. We propose that macroH2A1 enhances the licensing of pre-replication complexes via DNA helicase interaction and loading onto the Xi.
Collapse
Affiliation(s)
- Maria Arroyo
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Maruthi K Pabba
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Sunil K Pradhan
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Andreas Maiser
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, LMU Munich, Munich 81377, Germany
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Camí de les Escoles, 08916 Badalona, Barcelona, Spain
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, NY, NY 10029, USA
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
2
|
Pabba MK, Meyer J, Celikay K, Schermelleh L, Rohr K, Cardoso MC. DNA choreography: correlating mobility and organization of DNA across different resolutions from loops to chromosomes. Histochem Cell Biol 2024; 162:109-131. [PMID: 38758428 PMCID: PMC11227476 DOI: 10.1007/s00418-024-02285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
The dynamics of DNA in the cell nucleus plays a role in cellular processes and fates but the interplay of DNA mobility with the hierarchical levels of DNA organization is still underexplored. Here, we made use of DNA replication to directly label genomic DNA in an unbiased genome-wide manner. This was followed by live-cell time-lapse microscopy of the labeled DNA combining imaging at different resolutions levels simultaneously and allowing one to trace DNA motion across organization levels within the same cells. Quantification of the labeled DNA segments at different microscopic resolution levels revealed sizes comparable to the ones reported for DNA loops using 3D super-resolution microscopy, topologically associated domains (TAD) using 3D widefield microscopy, and also entire chromosomes. By employing advanced chromatin tracking and image registration, we discovered that DNA exhibited higher mobility at the individual loop level compared to the TAD level and even less at the chromosome level. Additionally, our findings indicate that chromatin movement, regardless of the resolution, slowed down during the S phase of the cell cycle compared to the G1/G2 phases. Furthermore, we found that a fraction of DNA loops and TADs exhibited directed movement with the majority depicting constrained movement. Our data also indicated spatial mobility differences with DNA loops and TADs at the nuclear periphery and the nuclear interior exhibiting lower velocity and radius of gyration than the intermediate locations. On the basis of these insights, we propose that there is a link between DNA mobility and its organizational structure including spatial distribution, which impacts cellular processes.
Collapse
Affiliation(s)
- Maruthi K Pabba
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Janis Meyer
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany
| | - Kerem Celikay
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany
| | | | - Karl Rohr
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany.
| | - M Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
3
|
Pabba MK, Ritter C, Chagin VO, Meyer J, Celikay K, Stear JH, Loerke D, Kolobynina K, Prorok P, Schmid AK, Leonhardt H, Rohr K, Cardoso MC. Replisome loading reduces chromatin motion independent of DNA synthesis. eLife 2023; 12:RP87572. [PMID: 37906089 PMCID: PMC10617993 DOI: 10.7554/elife.87572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Chromatin has been shown to undergo diffusional motion, which is affected during gene transcription by RNA polymerase activity. However, the relationship between chromatin mobility and other genomic processes remains unclear. Hence, we set out to label the DNA directly in a sequence unbiased manner and followed labeled chromatin dynamics in interphase human cells expressing GFP-tagged proliferating cell nuclear antigen (PCNA), a cell cycle marker and core component of the DNA replication machinery. We detected decreased chromatin mobility during the S-phase compared to G1 and G2 phases in tumor as well as normal diploid cells using automated particle tracking. To gain insight into the dynamical organization of the genome during DNA replication, we determined labeled chromatin domain sizes and analyzed their motion in replicating cells. By correlating chromatin mobility proximal to the active sites of DNA synthesis, we showed that chromatin motion was locally constrained at the sites of DNA replication. Furthermore, inhibiting DNA synthesis led to increased loading of DNA polymerases. This was accompanied by accumulation of the single-stranded DNA binding protein on the chromatin and activation of DNA helicases further restricting local chromatin motion. We, therefore, propose that it is the loading of replisomes but not their catalytic activity that reduces the dynamics of replicating chromatin segments in the S-phase as well as their accessibility and probability of interactions with other genomic regions.
Collapse
Affiliation(s)
| | - Christian Ritter
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | - Vadim O Chagin
- Department of Biology, Technical University of DarmstadtDarmstadtGermany
- Institute of Cytology RASSt. PetersburgRussian Federation
| | - Janis Meyer
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | - Kerem Celikay
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | - Jeffrey H Stear
- EMBL Australia Node in Single Molecule Science, University of New South WalesSydneyAustralia
| | - Dinah Loerke
- Department of Physics & Astronomy, University of DenverDenverUnited States
| | - Ksenia Kolobynina
- Department of Biology, Technical University of DarmstadtDarmstadtGermany
| | - Paulina Prorok
- Department of Biology, Technical University of DarmstadtDarmstadtGermany
| | - Alice Kristin Schmid
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | | | - Karl Rohr
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | - M Cristina Cardoso
- Department of Biology, Technical University of DarmstadtDarmstadtGermany
| |
Collapse
|
4
|
Rausch C, Weber P, Prorok P, Hörl D, Maiser A, Lehmkuhl A, Chagin VO, Casas-Delucchi CS, Leonhardt H, Cardoso MC. Developmental differences in genome replication program and origin activation. Nucleic Acids Res 2021; 48:12751-12777. [PMID: 33264404 PMCID: PMC7736824 DOI: 10.1093/nar/gkaa1124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
To ensure error-free duplication of all (epi)genetic information once per cell cycle, DNA replication follows a cell type and developmental stage specific spatio-temporal program. Here, we analyze the spatio-temporal DNA replication progression in (un)differentiated mouse embryonic stem (mES) cells. Whereas telomeres replicate throughout S-phase, we observe mid S-phase replication of (peri)centromeric heterochromatin in mES cells, which switches to late S-phase replication upon differentiation. This replication timing reversal correlates with and depends on an increase in condensation and a decrease in acetylation of chromatin. We further find synchronous duplication of the Y chromosome, marking the end of S-phase, irrespectively of the pluripotency state. Using a combination of single-molecule and super-resolution microscopy, we measure molecular properties of the mES cell replicon, the number of replication foci active in parallel and their spatial clustering. We conclude that each replication nanofocus in mES cells corresponds to an individual replicon, with up to one quarter representing unidirectional forks. Furthermore, with molecular combing and genome-wide origin mapping analyses, we find that mES cells activate twice as many origins spaced at half the distance than somatic cells. Altogether, our results highlight fundamental developmental differences on progression of genome replication and origin activation in pluripotent cells.
Collapse
Affiliation(s)
- Cathia Rausch
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Patrick Weber
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paulina Prorok
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - David Hörl
- Department of Biology II, LMU Munich, 81377 Munich, Germany
| | - Andreas Maiser
- Department of Biology II, LMU Munich, 81377 Munich, Germany
| | - Anne Lehmkuhl
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Vadim O Chagin
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.,Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | - M Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
5
|
Identification of DHX9 as a cell cycle regulated nucleolar recruitment factor for CIZ1. Sci Rep 2020; 10:18103. [PMID: 33093612 PMCID: PMC7582970 DOI: 10.1038/s41598-020-75160-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/12/2020] [Indexed: 11/15/2022] Open
Abstract
CIP1-interacting zinc finger protein 1 (CIZ1) is a nuclear matrix associated protein that facilitates a number of nuclear functions including initiation of DNA replication, epigenetic maintenance and associates with the inactive X-chromosome. Here, to gain more insight into the protein networks that underpin this diverse functionality, molecular panning and mass spectrometry are used to identify protein interaction partners of CIZ1, and CIZ1 replication domain (CIZ1-RD). STRING analysis of CIZ1 interaction partners identified 2 functional clusters: ribosomal subunits and nucleolar proteins including the DEAD box helicases, DHX9, DDX5 and DDX17. DHX9 shares common functions with CIZ1, including interaction with XIST long-non-coding RNA, epigenetic maintenance and regulation of DNA replication. Functional characterisation of the CIZ1-DHX9 complex showed that CIZ1-DHX9 interact in vitro and dynamically colocalise within the nucleolus from early to mid S-phase. CIZ1-DHX9 nucleolar colocalisation is dependent upon RNA polymerase I activity and is abolished by depletion of DHX9. In addition, depletion of DHX9 reduced cell cycle progression from G1 to S-phase in mouse fibroblasts. The data suggest that DHX9-CIZ1 are required for efficient cell cycle progression at the G1/S transition and that nucleolar recruitment is integral to their mechanism of action.
Collapse
|
6
|
Reinhart M, Cardoso MC. A journey through the microscopic ages of DNA replication. PROTOPLASMA 2017; 254:1151-1162. [PMID: 27943022 PMCID: PMC5376393 DOI: 10.1007/s00709-016-1058-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Scientific discoveries and technological advancements are inseparable but not always take place in a coherent chronological manner. In the next, we will provide a seemingly unconnected and serendipitous series of scientific facts that, in the whole, converged to unveil DNA and its duplication. We will not cover here the many and fundamental contributions from microbial genetics and in vitro biochemistry. Rather, in this journey, we will emphasize the interplay between microscopy development culminating on super resolution fluorescence microscopy (i.e., nanoscopy) and digital image analysis and its impact on our understanding of DNA duplication. We will interlace the journey with landmark concepts and experiments that have brought the cellular DNA replication field to its present state.
Collapse
Affiliation(s)
- Marius Reinhart
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany.
| |
Collapse
|
7
|
4D Visualization of replication foci in mammalian cells corresponding to individual replicons. Nat Commun 2016; 7:11231. [PMID: 27052570 PMCID: PMC4829660 DOI: 10.1038/ncomms11231] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/03/2016] [Indexed: 01/05/2023] Open
Abstract
Since the pioneering proposal of the replicon model of DNA replication 50 years ago, the predicted replicons have not been identified and quantified at the cellular level. Here, we combine conventional and super-resolution microscopy of replication sites in live and fixed cells with computational image analysis. We complement these data with genome size measurements, comprehensive analysis of S-phase dynamics and quantification of replication fork speed and replicon size in human and mouse cells. These multidimensional analyses demonstrate that replication foci (RFi) in three-dimensional (3D) preserved somatic mammalian cells can be optically resolved down to single replicons throughout S-phase. This challenges the conventional interpretation of nuclear RFi as replication factories, that is, the complex entities that process multiple clustered replicons. Accordingly, 3D genome organization and duplication can be now followed within the chromatin context at the level of individual replicons.
Collapse
|