1
|
Chen HJC. Mass Spectrometry Analysis of DNA and Protein Adducts as Biomarkers in Human Exposure to Cigarette Smoking: Acrolein as an Example. Chem Res Toxicol 2023; 36:132-140. [PMID: 36626705 DOI: 10.1021/acs.chemrestox.2c00354] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acrolein is a major component in cigarette smoke and a product of endogenous lipid peroxidation. It is difficult to distinguish human exposure to acrolein from exogenous sources versus endogenous causes, as components in cigarette smoke can stimulate lipid peroxidation in vivo. Therefore, analysis of acrolein-induced DNA and protein adducts by the highly accurate, sensitive, and specific mass spectrometry-based methods is vital to estimate the degree of damage by this IARC Group 2A carcinogen. This Perspective reviews the analyses of acrolein-induced DNA and protein adducts in humans by mass spectrometry focusing on samples accessible for biomonitoring, including DNA from leukocytes and oral cells and abundant proteins from blood, i.e., hemoglobin and serum albumin.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| |
Collapse
|
2
|
Juarez-Escobar J, Elizalde-Contreras JM, Loyola-Vargas VM, Ruiz-May E. A Phosphoproteomic Analysis Pipeline for Peels of Tropical Fruits. Methods Mol Biol 2021; 2139:179-196. [PMID: 32462587 DOI: 10.1007/978-1-0716-0528-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phosphorylation is a posttranslational reversible modification related to signaling and regulatory mechanisms. Protein phosphorylation is linked to structural changes that modulate protein activity, interaction, or localization and therefore the cell signaling pathways. The use of techniques for phosphoprotein enrichment along with mass spectrometry has become a powerful tool for the characterization of signal transduction in model organisms. However, limited efforts have focused on the establishment of protocols for the analysis of the phosphoproteome in nonmodel organisms such as tropical fruits. This chapter describes a potential pipeline for sample preparation and enrichment of phosphorylated proteins/peptides before MS analysis of peels of some species of tropical fruits.
Collapse
Affiliation(s)
- Janet Juarez-Escobar
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Veracruz, Mexico
| | - José M Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Veracruz, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Mérida, Yucatán, Mexico
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Veracruz, Mexico.
| |
Collapse
|
3
|
Zhao P, Wang Q, Kaur M, Kim YI, Dewald HD, Mozziconacci O, Liu Y, Chen H. Absolute Quantitation of Proteins by Coulometric Mass Spectrometry. Anal Chem 2020; 92:7877-7883. [DOI: 10.1021/acs.analchem.0c01151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pengyi Zhao
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States,
| | - Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States,
| | - Manpreet Kaur
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States,
| | - Yong-Ick Kim
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States,
| | - Howard D. Dewald
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Olivier Mozziconacci
- Department of Analytical Sciences, Merck Research Laboratories, Merck &Co., Inc., Rahway, New Jersey 07065, United States
| | - Yong Liu
- Department of Analytical Sciences, Merck Research Laboratories, Merck &Co., Inc., Rahway, New Jersey 07065, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States,
| |
Collapse
|
4
|
Arsova B, Watt M, Usadel B. Monitoring of Plant Protein Post-translational Modifications Using Targeted Proteomics. FRONTIERS IN PLANT SCIENCE 2018; 9:1168. [PMID: 30174677 PMCID: PMC6107839 DOI: 10.3389/fpls.2018.01168] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/23/2018] [Indexed: 05/19/2023]
Abstract
Protein post-translational modifications (PTMs) are among the fastest and earliest of plant responses to changes in the environment, making the mechanisms and dynamics of PTMs an important area of plant science. One of the most studied PTMs is protein phosphorylation. This review summarizes the use of targeted proteomics for the elucidation of the biological functioning of plant PTMs, and focuses primarily on phosphorylation. Since phosphorylated peptides have a low abundance, usually complex enrichment protocols are required for their research. Initial identification is usually performed with discovery phosphoproteomics, using high sensitivity mass spectrometers, where as many phosphopeptides are measured as possible. Once a PTM site is identified, biological characterization can be addressed with targeted proteomics. In targeted proteomics, Selected/Multiple Reaction Monitoring (S/MRM) is traditionally coupled to simple, standard protein digestion protocols, often omitting the enrichment step, and relying on triple-quadruple mass spectrometer. The use of synthetic peptides as internal standards allows accurate identification, avoiding cross-reactivity typical for some antibody based approaches. Importantly, internal standards allow absolute peptide quantitation, reported down to 0.1 femtomoles, also useful for determination of phospho-site occupancy. S/MRM is advantageous in situations where monitoring and diagnostics of peptide PTM status is needed for many samples, as it has faster sample processing times, higher throughput than other approaches, and excellent quantitation and reproducibility. Furthermore, the number of publicly available data-bases with plant PTM discovery data is growing, facilitating selection of modified peptides and design of targeted proteomics workflows. Recent instrument developments result in faster scanning times, inclusion of ion-trap instruments leading to parallel reaction monitoring- which further facilitates S/MRM experimental design. Finally, recent combination of data independent and data dependent spectra acquisition means that in addition to anticipated targeted data, spectra can now be queried for unanticipated information. The potential for future applications in plant biology is outlined.
Collapse
Affiliation(s)
- Borjana Arsova
- Institut für Bio- und Geowissenschaften, IBG-2–Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michelle Watt
- Institut für Bio- und Geowissenschaften, IBG-2–Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Björn Usadel
- Institut für Bio- und Geowissenschaften, IBG-2–Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
- IBMG: Institute for Biology I, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Brown CW, Sridhara V, Boutz DR, Person MD, Marcotte EM, Barrick JE, Wilke CO. Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions. BMC Genomics 2017; 18:301. [PMID: 28412930 PMCID: PMC5392934 DOI: 10.1186/s12864-017-3676-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/31/2017] [Indexed: 01/24/2023] Open
Abstract
Background Post-translational modification (PTM) of proteins is central to many cellular processes across all domains of life, but despite decades of study and a wealth of genomic and proteomic data the biological function of many PTMs remains unknown. This is especially true for prokaryotic PTM systems, many of which have only recently been recognized and studied in depth. It is increasingly apparent that a deep sampling of abundance across a wide range of environmental stresses, growth conditions, and PTM types, rather than simply cataloging targets for a handful of modifications, is critical to understanding the complex pathways that govern PTM deposition and downstream effects. Results We utilized a deeply-sampled dataset of MS/MS proteomic analysis covering 9 timepoints spanning the Escherichia coli growth cycle and an unbiased PTM search strategy to construct a temporal map of abundance for all PTMs within a 400 Da window of mass shifts. Using this map, we are able to identify novel targets and temporal patterns for N-terminal N α acetylation, C-terminal glutamylation, and asparagine deamidation. Furthermore, we identify a possible relationship between N-terminal N α acetylation and regulation of protein degradation in stationary phase, pointing to a previously unrecognized biological function for this poorly-understood PTM. Conclusions Unbiased detection of PTM in MS/MS proteomics data facilitates the discovery of novel modification types and previously unobserved dynamic changes in modification across growth timepoints. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3676-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin W Brown
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Viswanadham Sridhara
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas, USA
| | - Daniel R Boutz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Maria D Person
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Edward M Marcotte
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Jeffrey E Barrick
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Claus O Wilke
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA. .,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas, USA. .,Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|