1
|
Rathore D, Marino MJ, Issara-Amphorn J, Yoon SH, Manes NP, Nita-Lazar A. Lipopolysaccharide Regulates the Macrophage RNA-Binding Proteome. J Proteome Res 2024; 23:3280-3293. [PMID: 38527097 PMCID: PMC11296930 DOI: 10.1021/acs.jproteome.3c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
RNA-protein interactions within cellular signaling pathways have significant modulatory effects on RNA binding proteins' (RBPs') effector functions. During the innate immune response, specific RNA-protein interactions have been reported as a regulatory layer of post-transcriptional control. We investigated changes in the RNA-bound proteome of immortalized mouse macrophages (IMM) following treatment with lipopolysaccharide (LPS). Stable isotope labeling by amino acids in cell culture (SILAC) of cells followed by unbiased purification of RNP complexes at two time points after LPS stimulation and bottom-up proteomic analysis by LC-MS/MS resulted in a set of significantly affected RBPs. Global RNA sequencing and LFQ proteomics were used to characterize the correlation of transcript and protein abundance changes in response to LPS at different time points with changes in protein-RNA binding. Il1α, MARCKS, and ACOD1 were noted as RBP candidates involved in innate immune signaling. The binding sites of the RBP and RNA conjugates at amino acid resolution were investigated by digesting the cross-linked oligonucleotide from peptides remaining after elution using Nuclease P1. The combined data sets provide directions for further studies of innate immune signaling regulation by RBP interactions with different classes of RNA.
Collapse
Affiliation(s)
- Deepali Rathore
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Matthew J. Marino
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jiraphorn Issara-Amphorn
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sung Hwan Yoon
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nathan P. Manes
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Hu H, Hu W, Guo AD, Zhai L, Ma S, Nie HJ, Zhou BS, Liu T, Jia X, Liu X, Yao X, Tan M, Chen XH. Spatiotemporal and direct capturing global substrates of lysine-modifying enzymes in living cells. Nat Commun 2024; 15:1465. [PMID: 38368419 PMCID: PMC10874396 DOI: 10.1038/s41467-024-45765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/19/2024] Open
Abstract
Protein-modifying enzymes regulate the dynamics of myriad post-translational modification (PTM) substrates. Precise characterization of enzyme-substrate associations is essential for the molecular basis of cellular function and phenotype. Methods for direct capturing global substrates of protein-modifying enzymes in living cells are with many challenges, and yet largely unexplored. Here, we report a strategy to directly capture substrates of lysine-modifying enzymes via PTM-acceptor residue crosslinking in living cells, enabling global profiling of substrates of PTM-enzymes and validation of PTM-sites in a straightforward manner. By integrating enzymatic PTM-mechanisms, and genetically encoding residue-selective photo-crosslinker into PTM-enzymes, our strategy expands the substrate profiles of both bacterial and mammalian lysine acylation enzymes, including bacterial lysine acylases PatZ, YiaC, LplA, TmcA, and YjaB, as well as mammalian acyltransferases GCN5 and Tip60, leading to discovery of distinct yet functionally important substrates and acylation sites. The concept of direct capturing substrates of PTM-enzymes via residue crosslinking may extend to the other types of amino acid residues beyond lysine, which has the potential to facilitate the investigation of diverse types of PTMs and substrate-enzyme interactive proteomics.
Collapse
Affiliation(s)
- Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - An-Di Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Song Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui-Jun Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bin-Shan Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tianxian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xinglong Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics and Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics and Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China.
| | - Xiao-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
3
|
Arzumanian VA, Kurbatov IY, Ptitsyn KG, Khmeleva SA, Kurbatov LK, Radko SP, Poverennaya EV. Identifying N6-Methyladenosine Sites in HepG2 Cell Lines Using Oxford Nanopore Technology. Int J Mol Sci 2023; 24:16477. [PMID: 38003667 PMCID: PMC10671286 DOI: 10.3390/ijms242216477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
RNA modifications, particularly N6-methyladenosine (m6A), are pivotal regulators of RNA functionality and cellular processes. We analyzed m6A modifications by employing Oxford Nanopore technology and the m6Anet algorithm, focusing on the HepG2 cell line. We identified 3968 potential m6A modification sites in 2851 transcripts, corresponding to 1396 genes. A gene functional analysis revealed the active involvement of m6A-modified genes in ubiquitination, transcription regulation, and protein folding processes, aligning with the known role of m6A modifications in histone ubiquitination in cancer. To ensure data robustness, we assessed reproducibility across technical replicates. This study underscores the importance of evaluating algorithmic reproducibility, especially in supervised learning. Furthermore, we examined correlations between transcriptomic, translatomic, and proteomic levels. A strong transcriptomic-translatomic correlation was observed. In conclusion, our study deepens our understanding of m6A modifications' multifaceted impacts on cellular processes and underscores the importance of addressing reproducibility concerns in analytical approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ekaterina V. Poverennaya
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 119121 Moscow, Russia; (V.A.A.); (I.Y.K.); (K.G.P.); (S.A.K.); (L.K.K.); (S.P.R.)
| |
Collapse
|
4
|
Tikhonov D, Kulikova L, Kopylov A, Malsagova K, Stepanov A, Rudnev V, Kaysheva A. Super Secondary Structures of Proteins with Post-Translational Modifications in Colon Cancer. Molecules 2020; 25:molecules25143144. [PMID: 32660089 PMCID: PMC7397127 DOI: 10.3390/molecules25143144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
New advances in protein post-translational modifications (PTMs) have revealed a complex layer of regulatory mechanisms through which PTMs control cell signaling and metabolic pathways, contributing to the diverse metabolic phenotypes found in cancer. Using conformational templates and the three-dimensional (3D) environment investigation of proteins in patients with colorectal cancer, it was demonstrated that most PTMs (phosphorylation, acetylation, and ubiquitination) are localized in the supersecondary structures (helical pairs). We showed that such helical pairs are represented on the outer surface of protein molecules and characterized by a largely accessible area for the surrounding solvent. Most promising and meaningful modifications were observed on the surface of vitamin D-binding protein (VDBP), complement C4-A (CO4A), X-ray repair cross-complementing protein 6 (XRCC6), Plasma protease C1 inhibitor (IC1), and albumin (ALBU), which are related to colorectal cancer developing. Based on the presented data, we propose the impact of the observed modifications in immune response, inflammatory reaction, regulation of cell migration, and promotion of tumor growth. Here, we suggest a computational approach in which high-throughput analysis for identification and characterization of PTM signature, associated with cancer metabolic reprograming, can be improved to prognostic value and bring a new strategy to the targeted therapy.
Collapse
Affiliation(s)
- Dmitry Tikhonov
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (D.T.); (L.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
| | - Liudmila Kulikova
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (D.T.); (L.K.)
| | - Arthur Kopylov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.K.); (K.M.); (A.S.)
| | - Kristina Malsagova
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.K.); (K.M.); (A.S.)
| | - Alexander Stepanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.K.); (K.M.); (A.S.)
| | - Vladimir Rudnev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
| | - Anna Kaysheva
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.K.); (K.M.); (A.S.)
- Correspondence: ; Tel.: +79-199-175-017
| |
Collapse
|
5
|
Andreu C, Del Olmo ML. Yeast arming systems: pros and cons of different protein anchors and other elements required for display. Appl Microbiol Biotechnol 2018; 102:2543-2561. [PMID: 29435617 DOI: 10.1007/s00253-018-8827-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Yeast display is a powerful strategy that consists in exposing peptides or proteins of interest on the cell surface of this microorganism. Ever since initial experiments with this methodology were carried out, its scope has extended and many applications have been successfully developed in different science and technology fields. Several yeast display systems have been designed, which all involve introducting into yeast cells the gene fusions that contain the coding regions of a signal peptide, an anchor protein, to properly attach the target to the cell surface, and the protein of interest to be exposed, all of which are controlled by a strong promoter. In this work, we report the description of such elements for the alternative systems introduced by focusing particularly on anchor proteins. The comparisons made between them are included whenever possible, and the main advantages and inconveniences of each one are discussed. Despite the huge number of publications on yeast surface display and the revisions published to date, this topic has not yet been widely considered. Finally, given the growing interest in developing systems for non-Saccharomyces yeasts, the main strategies reported for some are also summarized.
Collapse
Affiliation(s)
- Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Vicent Andrés Estellés s/n. 46100 Burjassot, València, Spain
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de València, Dr. Moliner 50, E-46100 Burjassot, València, Spain.
| |
Collapse
|
6
|
Anany H, Chou Y, Cucic S, Derda R, Evoy S, Griffiths M. From Bits and Pieces to Whole Phage to Nanomachines: Pathogen Detection Using Bacteriophages. Annu Rev Food Sci Technol 2017; 8:305-329. [DOI: 10.1146/annurev-food-041715-033235] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- H. Anany
- Canadian Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada N1G 2W1;, ,
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt 11566
| | - Y. Chou
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - S. Cucic
- Canadian Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada N1G 2W1;, ,
| | - R. Derda
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - S. Evoy
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - M.W. Griffiths
- Canadian Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada N1G 2W1;, ,
| |
Collapse
|
7
|
Bidlingmaier S, Ha K, Lee NK, Su Y, Liu B. Proteome-wide Identification of Novel Ceramide-binding Proteins by Yeast Surface cDNA Display and Deep Sequencing. Mol Cell Proteomics 2016; 15:1232-45. [PMID: 26729710 DOI: 10.1074/mcp.m115.055954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/06/2022] Open
Abstract
Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Kevin Ha
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Nam-Kyung Lee
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Yang Su
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Bin Liu
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| |
Collapse
|