1
|
Norris JL, Hedglin M. Direct, ensemble FRET approaches to monitor transient state kinetics of human DNA polymerase δ holoenzyme assembly and initiation of DNA synthesis. Methods Enzymol 2024; 705:271-309. [PMID: 39389667 PMCID: PMC11998599 DOI: 10.1016/bs.mie.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In humans, DNA polymerase δ (pol δ) holoenzymes, comprised of pol δ and the processivity sliding clamp, proliferating cell nuclear antigen (PCNA), carry out DNA synthesis during lagging strand replication, the initiation of leading strand DNA replication as well as most of the major DNA damage repair pathways. In each of these contexts, pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a stepwise process that involves the PCNA clamp loader, replication factor C and, depending on the DNA synthesis pathway, the major single strand DNA-binding protein complex, replication protein A (RPA). In a recent report from our laboratory, we designed and utilized direct, ensemble Förster Resonance Energy Transfer approaches to monitor the transient state kinetics of pol δ holoenzyme assembly and initiation of DNA synthesis on P/T junctions engaged by RPA. In this chapter, we detail the original approaches and discuss adaptations that can be utilized to monitor fast kinetic reactions in the millisecond (ms) timescale. All approaches described in this chapter utilize a commercially-available fluorescence spectrophotometer, can be readily evolved for alternative DNA polymerases and P/T DNA substrates, and permit incorporation of protein posttranslational modifications, accessory factors, DNA covalent modifications, accessory factors, enzymes, etc. Hence, these approaches are widely accessible and broadly applicable for characterizing DNA polymerase holoenzyme assembly and initiation of DNA synthesis during any PCNA-dependent DNA synthesis pathway.
Collapse
Affiliation(s)
- Jessica L Norris
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
2
|
Conformational Dynamics of Human ALKBH2 Dioxygenase in the Course of DNA Repair as Revealed by Stopped-Flow Fluorescence Spectroscopy. Molecules 2022; 27:molecules27154960. [PMID: 35956910 PMCID: PMC9370705 DOI: 10.3390/molecules27154960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Elucidation of physicochemical mechanisms of enzymatic processes is one of the main tasks of modern biology. High efficiency and selectivity of enzymatic catalysis are mostly ensured by conformational dynamics of enzymes and substrates. Here, we applied a stopped-flow kinetic analysis based on fluorescent spectroscopy to investigate mechanisms of conformational transformations during the removal of alkylated bases from DNA by ALKBH2, a human homolog of Escherichia coli AlkB dioxygenase. This enzyme protects genomic DNA against various alkyl lesions through a sophisticated catalytic mechanism supported by a cofactor (Fe(II)), a cosubstrate (2-oxoglutarate), and O2. We present here a comparative study of conformational dynamics in complexes of the ALKBH2 protein with double-stranded DNA substrates containing N1-methyladenine, N3-methylcytosine, or 1,N6-ethenoadenine. By means of fluorescent labels of different types, simultaneous detection of conformational transitions in the protein globule and DNA substrate molecule was performed. Fitting of the kinetic curves by a nonlinear-regression method yielded a molecular mechanism and rate constants of its individual steps. The results shed light on overall conformational dynamics of ALKBH2 and damaged DNA during the catalytic cycle.
Collapse
|
3
|
Komaniecka N, Porras M, Cairn L, Santas JA, Ferreiro N, Penedo JC, Bañuelos S. Conformational Rearrangements Regulating the DNA Repair Protein APE1. Int J Mol Sci 2022; 23:ijms23148015. [PMID: 35887361 PMCID: PMC9324194 DOI: 10.3390/ijms23148015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Apurinic apyrimidinic endonuclease 1 (APE1) is a key enzyme of the Base Excision Repair (BER) pathway, which primarily manages oxidative lesions of DNA. Once the damaged base is removed, APE1 recognises the resulting abasic site and cleaves the phosphodiester backbone to allow for the correction by subsequent enzymes of the BER machinery. In spite of a wealth of information on APE1 structure and activity, its regulation mechanism still remains to be understood. Human APE1 consists of a globular catalytic domain preceded by a flexible N-terminal extension, which might be involved in the interaction with DNA. Moreover, the binding of the nuclear chaperone nucleophosmin (NPM1) to this region has been reported to impact APE1 catalysis. To evaluate intra- and inter-molecular conformational rearrangements upon DNA binding, incision, and interaction with NPM1, we used Förster resonance energy transfer (FRET), a fluorescence spectroscopy technique sensitive to molecular distances. Our results suggest that the N-terminus approaches the DNA at the downstream side of the abasic site and enables the building of a predictive model of the full-length APE1/DNA complex. Furthermore, the spatial configuration of the N-terminal tail is sensitive to NPM1, which could be related to the regulation of APE1.
Collapse
Affiliation(s)
- Nina Komaniecka
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
| | - Marta Porras
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Louis Cairn
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
| | - Jon Ander Santas
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nerea Ferreiro
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Juan Carlos Penedo
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, Scottish Universities Physics Alliance (SUPA) School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK;
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, St. Andrews KY16 9ST, UK
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: ; Tel.: +34-94-601-3347
| |
Collapse
|
4
|
Bacterial Transcriptional Regulators: A Road Map for Functional, Structural, and Biophysical Characterization. Int J Mol Sci 2022; 23:ijms23042179. [PMID: 35216300 PMCID: PMC8879271 DOI: 10.3390/ijms23042179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The different niches through which bacteria move during their life cycle require a fast response to the many environmental queues they encounter. The sensing of these stimuli and their correct response is driven primarily by transcriptional regulators. This kind of protein is involved in sensing a wide array of chemical species, a process that ultimately leads to the regulation of gene transcription. The allosteric-coupling mechanism of sensing and regulation is a central aspect of biological systems and has become an important field of research during the last decades. In this review, we summarize the state-of-the-art techniques applied to unravel these complex mechanisms. We introduce a roadmap that may serve for experimental design, depending on the answers we seek and the initial information we have about the system of study. We also provide information on databases containing available structural information on each family of transcriptional regulators. Finally, we discuss the recent results of research about the allosteric mechanisms of sensing and regulation involving many transcriptional regulators of interest, highlighting multipronged strategies and novel experimental techniques. The aim of the experiments discussed here was to provide a better understanding at a molecular level of how bacteria adapt to the different environmental threats they face.
Collapse
|
5
|
Determining translocation orientations of nucleic acid helicases. Methods 2021; 204:160-171. [PMID: 34758393 PMCID: PMC9076756 DOI: 10.1016/j.ymeth.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Helicase enzymes translocate along an RNA or DNA template with a defined polarity to unwind, separate, or remodel duplex strands for a variety of genome maintenance processes. Helicase mutations are commonly associated with a variety of diseases including aging, cancer, and neurodegeneration. Biochemical characterization of these enzymes has provided a wealth of information on the kinetics of unwinding and substrate preferences, and several high-resolution structures of helicases alone and bound to oligonucleotides have been solved. Together, they provide mechanistic insights into the structural translocation and unwinding orientations of helicases. However, these insights rely on structural inferences derived from static snapshots. Instead, continued efforts should be made to combine structure and kinetics to better define active translocation orientations of helicases. This review explores many of the biochemical and biophysical methods utilized to map helicase binding orientation to DNA or RNA substrates and includes several time-dependent methods to unequivocally map the active translocation orientation of these enzymes to better define the active leading and trailing faces.
Collapse
|
6
|
Arya S, Gourley AJ, Penedo JC, Blindauer CA, Stewart AJ. Fatty acids may influence insulin dynamics through modulation of albumin-Zn 2+ interactions. Bioessays 2021; 43:e2100172. [PMID: 34725844 DOI: 10.1002/bies.202100172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023]
Abstract
Insulin is stored within the pancreas in an inactive Zn2+ -bound hexameric form prior to release. Similarly, clinical insulins contain Zn2+ and form multimeric complexes. Upon release from the pancreas or upon injection, insulin only becomes active once Zn2+ disengages from the complex. In plasma and other extracellular fluids, the majority of Zn2+ is bound to human serum albumin (HSA), which plays a vital role in controlling insulin pharmacodynamics by enabling removal of Zn2+ . The Zn2+ -binding properties of HSA are attenuated by non-esterified fatty acids (NEFAs) also transported by HSA. Elevated NEFA concentrations are associated with obesity and type 2 diabetes. Here we present the hypothesis that higher NEFA levels in obese and/or diabetic individuals may contribute to insulin resistance and affect therapeutic insulin dose-response profiles, through modulation of HSA/Zn2+ dynamics. We envisage this novel concept to have important implications for personalized treatments and management of diabetes-related conditions in the future.
Collapse
Affiliation(s)
- Swati Arya
- School of Medicine, University of St. Andrews, St. Andrews, Fife, UK
| | - Adam J Gourley
- School of Medicine, University of St. Andrews, St. Andrews, Fife, UK
| | - J Carlos Penedo
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, UK
| | | | - Alan J Stewart
- School of Medicine, University of St. Andrews, St. Andrews, Fife, UK
| |
Collapse
|
7
|
Molecular Mechanisms Regulating the DNA Repair Protein APE1: A Focus on Its Flexible N-Terminal Tail Domain. Int J Mol Sci 2021; 22:ijms22126308. [PMID: 34208390 PMCID: PMC8231204 DOI: 10.3390/ijms22126308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
APE1 (DNA (apurinic/apyrimidinic site) endonuclease 1) is a key enzyme of one of the major DNA repair routes, the BER (base excision repair) pathway. APE1 fulfils additional functions, acting as a redox regulator of transcription factors and taking part in RNA metabolism. The mechanisms regulating APE1 are still being deciphered. Structurally, human APE1 consists of a well-characterized globular catalytic domain responsible for its endonuclease activity, preceded by a conformationally flexible N-terminal extension, acquired along evolution. This N-terminal tail appears to play a prominent role in the modulation of APE1 and probably in BER coordination. Thus, it is primarily involved in mediating APE1 localization, post-translational modifications, and protein–protein interactions, with all three factors jointly contributing to regulate the enzyme. In this review, recent insights on the regulatory role of the N-terminal region in several aspects of APE1 function are covered. In particular, interaction of this region with nucleophosmin (NPM1) might modulate certain APE1 activities, representing a paradigmatic example of the interconnection between various regulatory factors.
Collapse
|
8
|
Chen SWW, Banneville AS, Teulon JM, Timmins J, Pellequer JL. Nanoscale surface structures of DNA bound to Deinococcus radiodurans HU unveiled by atomic force microscopy. NANOSCALE 2020; 12:22628-22638. [PMID: 33150905 DOI: 10.1039/d0nr05320a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Deinococcus radiodurans protein HU (DrHU) was shown to be critical for nucleoid activities, yet its functional and structural properties remain largely unexplored. We have applied atomic force microscopy (AFM) imaging to study DrHU binding to pUC19-DNA in vitro and analyzed the topographic structures formed at the nanoscale. At the single-molecule level, AFM imaging allows visualization of super-helical turns on naked DNA surfaces and characterization of free DrHU molecules observed as homodimers. When enhancing the molecular surface structures of AFM images by the Laplacian weight filter, the distribution of bound DrHUs was visibly varied as a function of the DrHU/DNA molar ratio. At a low molar ratio, DrHU binding was found to reduce the volume of condensed DNA configuration by about 50%. We also show that DrHU is capable of bridging distinct DNA segments. Moreover, at a low molar ratio, the binding orientation of individual DrHU dimers could be perceived on partially "open" DNA configuration. At a high molar ratio, DrHU stiffened the DNA molecule and enlarged the spread of the open DNA configuration. Furthermore, a lattice-like pattern could be seen on the surface of DrHU-DNA complex, indicating that DrHU multimerization had occurred leading to the formation of a higher order architecture. Together, our results show that the functional plasticity of DrHU in mediating DNA organization is subject to both the conformational dynamics of DNA molecules and protein abundance.
Collapse
Affiliation(s)
- Shu-Wen W Chen
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France.
| | | | | | | | | |
Collapse
|
9
|
Vink JNA, Brouns SJJ, Hohlbein J. Extracting Transition Rates in Particle Tracking Using Analytical Diffusion Distribution Analysis. Biophys J 2020; 119:1970-1983. [PMID: 33086040 DOI: 10.1016/j.bpj.2020.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022] Open
Abstract
Single-particle tracking is an important technique in the life sciences to understand the kinetics of biomolecules. The analysis of apparent diffusion coefficients in vivo, for example, enables researchers to determine whether biomolecules are moving alone, as part of a larger complex, or are bound to large cellular components such as the membrane or chromosomal DNA. A remaining challenge has been to retrieve quantitative kinetic models, especially for molecules that rapidly switch between different diffusional states. Here, we present analytical diffusion distribution analysis (anaDDA), a framework that allows for extracting transition rates from distributions of apparent diffusion coefficients calculated from short trajectories that feature less than 10 localizations per track. Under the assumption that the system is Markovian and diffusion is purely Brownian, we show that theoretically predicted distributions accurately match simulated distributions and that anaDDA outperforms existing methods to retrieve kinetics, especially in the fast regime of 0.1-10 transitions per imaging frame. AnaDDA does account for the effects of confinement and tracking window boundaries. Furthermore, we added the option to perform global fitting of data acquired at different frame times to allow complex models with multiple states to be fitted confidently. Previously, we have started to develop anaDDA to investigate the target search of CRISPR-Cas complexes. In this work, we have optimized the algorithms and reanalyzed experimental data of DNA polymerase I diffusing in live Escherichia coli. We found that long-lived DNA interaction by DNA polymerase are more abundant upon DNA damage, suggesting roles in DNA repair. We further revealed and quantified fast DNA probing interactions that last shorter than 10 ms. AnaDDA pushes the boundaries of the timescale of interactions that can be probed with single-particle tracking and is a mathematically rigorous framework that can be further expanded to extract detailed information about the behavior of biomolecules in living cells.
Collapse
Affiliation(s)
- Jochem N A Vink
- Department of Bionanoscience, Delft University of Technology, HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Microspectroscopy Reasearch Facility, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
10
|
Gardini S, Furini S, Santucci A, Niccolai N. A structural bioinformatics investigation on protein–DNA complexes delineates their modes of interaction. MOLECULAR BIOSYSTEMS 2017; 13:1010-1017. [DOI: 10.1039/c7mb00071e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A non-redundant dataset of 629 protein–DNA complexes has been used to investigate on amino acid composition of protein-DNA interfaces. Structural proteins, transcription factors and DNA-related enzymes show specific patterns accounting for different modes of their interaction with DNA.
Collapse
Affiliation(s)
- Simone Gardini
- Department of Biotechnology
- Chemistry and Pharmacy
- University of Siena
- Italy
| | - Simone Furini
- Department of Medical Biotechnologies
- University of Siena
- Siena
- Italy
| | - Annalisa Santucci
- Department of Biotechnology
- Chemistry and Pharmacy
- University of Siena
- Italy
| | - Neri Niccolai
- Department of Biotechnology
- Chemistry and Pharmacy
- University of Siena
- Italy
| |
Collapse
|