1
|
Liu H, Cui Y, Zhao X, Wei L, Wang X, Shen N, Odom T, Li X, Lawless W, Karunarathne K, Muschol M, Guida W, Cao C, Ye L, Cai J. Helical sulfonyl-γ-AApeptides modulating Aβ oligomerization and cytotoxicity by recognizing Aβ helix. Proc Natl Acad Sci U S A 2024; 121:e2311733121. [PMID: 38285951 PMCID: PMC10861862 DOI: 10.1073/pnas.2311733121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/10/2023] [Indexed: 01/31/2024] Open
Abstract
In contrast to prevalent strategies which make use of β-sheet mimetics to block Aβ fibrillar growth, in this study, we designed a series of sulfonyl-γ-AApeptide helices that targeted the crucial α-helix domain of Aβ13-26 and stabilized Aβ conformation to avoid forming the neurotoxic Aβ oligomeric β-sheets. Biophysical assays such as amyloid kinetics and TEM demonstrated that the Aβ oligomerization and fibrillation could be greatly prevented and even reversed in the presence of sulfonyl-γ-AApeptides in a sequence-specific and dose-dependent manner. The studies based on circular dichroism, Two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) spectra unambiguously suggested that the sulfonyl-γ-AApeptide Ab-6 could bind to the central region of Aβ42 and induce α-helix conformation in Aβ. Additionally, Electrospray ionisation-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) was employed to rule out a colloidal mechanism of inhibitor and clearly supported the capability of Ab-6 for inhibiting the formation of Aβ aggregated forms. Furthermore, Ab-6 could rescue neuroblastoma cells by eradicating Aβ-mediated cytotoxicity even in the presence of pre-formed Aβ aggregates. The confocal microscopy demonstrated that Ab-6 could still specifically bind Aβ42 and colocalize into mitochondria in the cellular environment, suggesting the rescue of cell viability might be due to the protection of mitochondrial function otherwise impaired by Aβ42 aggregation. Taken together, our studies indicated that sulfonyl-γ-AApeptides as helical peptidomimetics could direct Aβ into the off-pathway helical secondary structure, thereby preventing the formation of Aβ oligomerization, fibrillation and rescuing Aβ induced cell cytotoxicity.
Collapse
Affiliation(s)
- Heng Liu
- Department of Chemistry, University of South Florida, Tampa, FL33620
| | - Yunpeng Cui
- Department of Chemistry, University of South Florida, Tampa, FL33620
| | - Xue Zhao
- Department of Chemistry, University of South Florida, Tampa, FL33620
| | - Lulu Wei
- Department of Chemistry, University of South Florida, Tampa, FL33620
| | - Xudong Wang
- Department of Molecular Biosciences, University of South Florida, Tampa, FL33620
| | - Ning Shen
- Department of Chemistry, University of South Florida, Tampa, FL33620
| | - Timothy Odom
- Department of Chemistry, University of South Florida, Tampa, FL33620
| | - Xuming Li
- Department of Chemistry, University of South Florida, Tampa, FL33620
| | - William Lawless
- Department of Chemistry, University of South Florida, Tampa, FL33620
| | | | - Martin Muschol
- Department of Physics, University of South Florida, Tampa, FL33620
| | - Wayne Guida
- Department of Chemistry, University of South Florida, Tampa, FL33620
| | - Chuanhai Cao
- Taneja College of Pharmacy, University of South Florida, Tampa, FL33612
| | - Libin Ye
- Department of Molecular Biosciences, University of South Florida, Tampa, FL33620
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL33620
| |
Collapse
|
2
|
Yokoyama K, Barbour E, Hirschkind R, Martinez Hernandez B, Hausrath K, Lam T. Protein Corona Formation and Aggregation of Amyloid β 1-40-Coated Gold Nanocolloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1728-1746. [PMID: 38194428 DOI: 10.1021/acs.langmuir.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Amyloid fibrillogenesis is a pathogenic protein aggregation process that occurs through a highly ordered process of protein-protein interactions. To better understand the protein-protein interactions involved in amyloid fibril formation, we formed nanogold colloid aggregates by stepwise additions of ∼2 nmol of amyloid β 1-40 peptide (Aβ1-40) at pH ∼3.7 and ∼25 °C. The processes of protein corona formation and building of gold colloid [diameters (d) of 20 and 80 nm] aggregates were confirmed by a red-shift of the surface plasmon resonance (SPR) band, λpeak, as the number of Aβ1-40 peptides [N(Aβ1-40)] increased. The normalized red-shift of λpeak, Δλ, was correlated with the degree of protein aggregation, and this process was approximated as the adsorption isotherm explained by the Langmuir-Freundlich model. As the coverage fraction (θ) was analyzed as a function of ϕ, which is the N(Aβ1-40) per total surface area of nanogold colloids available for adsorption, the parameters for explaining the Langmuir-Freundlich model were in good agreement for both 20 and 80 nm gold, indicating that ϕ could define the stage of the aggregation process. Surface-enhanced Raman scattering (SERS) imaging was conducted at designated values of ϕ and suggested that a protein-gold surface interaction during the initial adsorption stage may be dependent on the nanosize. The 20 nm gold case seems to prefer a relatively smaller contacting section, such as a -C-N or C═C bond, but a plane of the benzene ring may play a significant role for 80 nm gold. Regardless of the size of the particles, the β-sheet and random coil conformations were considered to be used to form gold colloid aggregates. The methodology developed in this study allows for new insights into protein-protein interactions at distinct stages of aggregation.
Collapse
Affiliation(s)
- Kazushige Yokoyama
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Eli Barbour
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Rachel Hirschkind
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Bryan Martinez Hernandez
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Kaylee Hausrath
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Theresa Lam
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| |
Collapse
|
3
|
Khaled M, Rönnbäck I, Ilag LL, Gräslund A, Strodel B, Österlund N. A Hairpin Motif in the Amyloid-β Peptide Is Important for Formation of Disease-Related Oligomers. J Am Chem Soc 2023; 145:18340-18354. [PMID: 37555670 PMCID: PMC10450692 DOI: 10.1021/jacs.3c03980] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 08/10/2023]
Abstract
The amyloid-β (Aβ) peptide is associated with the development of Alzheimer's disease and is known to form highly neurotoxic prefibrillar oligomeric aggregates, which are difficult to study due to their transient, low-abundance, and heterogeneous nature. To obtain high-resolution information about oligomer structure and dynamics as well as relative populations of assembly states, we here employ a combination of native ion mobility mass spectrometry and molecular dynamics simulations. We find that the formation of Aβ oligomers is dependent on the presence of a specific β-hairpin motif in the peptide sequence. Oligomers initially grow spherically but start to form extended linear aggregates at oligomeric states larger than those of the tetramer. The population of the extended oligomers could be notably increased by introducing an intramolecular disulfide bond, which prearranges the peptide in the hairpin conformation, thereby promoting oligomeric structures but preventing conversion into mature fibrils. Conversely, truncating one of the β-strand-forming segments of Aβ decreased the hairpin propensity of the peptide and thus decreased the oligomer population, removed the formation of extended oligomers entirely, and decreased the aggregation propensity of the peptide. We thus propose that the observed extended oligomer state is related to the formation of an antiparallel sheet state, which then nucleates into the amyloid state. These studies provide increased mechanistic understanding of the earliest steps in Aβ aggregation and suggest that inhibition of Aβ folding into the hairpin conformation could be a viable strategy for reducing the amount of toxic oligomers.
Collapse
Affiliation(s)
- Mohammed Khaled
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Isabel Rönnbäck
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Leopold L. Ilag
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Birgit Strodel
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nicklas Österlund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet − Biomedicum, 171 65 Solna, Sweden
| |
Collapse
|
4
|
Matuszyk MM, Garwood CJ, Ferraiuolo L, Simpson JE, Staniforth RA, Wharton SB. Biological and methodological complexities of beta-amyloid peptide: Implications for Alzheimer's disease research. J Neurochem 2021; 160:434-453. [PMID: 34767256 DOI: 10.1111/jnc.15538] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023]
Abstract
Although controversial, the amyloid cascade hypothesis remains central to the Alzheimer's disease (AD) field and posits amyloid-beta (Aβ) as the central factor initiating disease onset. In recent years, there has been an increase in emphasis on studying the role of low molecular weight aggregates, such as oligomers, which are suggested to be more neurotoxic than fibrillary Aβ. Other Aβ isoforms, such as truncated Aβ, have also been implicated in disease. However, developing a clear understanding of AD pathogenesis has been hampered by the complexity of Aβ biochemistry in vitro and in vivo. This review explores factors contributing to the lack of consistency in experimental approaches taken to model Aβ aggregation and toxicity and provides an overview of the different techniques available to analyse Aβ, such as electron and atomic force microscopy, nuclear magnetic resonance spectroscopy, dye-based assays, size exclusion chromatography, mass spectrometry and SDS-PAGE. The review also explores how different types of Aβ can influence Aβ aggregation and toxicity, leading to variation in experimental outcomes, further highlighting the need for standardisation in Aβ preparations and methods used in current research.
Collapse
Affiliation(s)
- Martyna M Matuszyk
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Claire J Garwood
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Man VH, He X, Ji B, Liu S, Xie XQ, Wang J. Introducing Virtual Oligomerization Inhibition to Identify Potent Inhibitors of Aβ Oligomerization. J Chem Theory Comput 2020; 16:3920-3935. [PMID: 32307994 DOI: 10.1021/acs.jctc.0c00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ) oligomers are known as the most toxic form of Aβ peptides, and they are a major contributor to Alzheimer's disease. Therefore, developing antagonist screening methods for the formation of Aβ oligomers is urgent and of great interest. In this study, we introduce virtual oligomerization inhibition (VOI), a novel virtual screening protocol that applies atomistic simulation to quantitatively investigate the ability of a ligand in interfering Aβ oligomerization and the formation of Aβ oligomers. Results from the VOI performance on six known inhibitors of Aβ aggregation (brazilin, curcumin, EGCG, ELND005, resveratrol, and tacrine) are in excellent agreement with the results of expensive experiments. Moreover, VOI can reveal the mechanism and kinetics of the inhibition process at the atomistic level. VOI not only improves the efficiency of the antagonist screening for Aβ oligomerization but also reduces the cost of performing the task. Attractively, the principle of VOI can also be applied to inhibitor screening for the aggregation of other amyloid proteins/peptides.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shuhan Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
6
|
Karanji AK, Beasely M, Sharif D, Ranjbaran A, Legleiter J, Valentine SJ. Investigating the interactions of the first 17 amino acid residues of Huntingtin with lipid vesicles using mass spectrometry and molecular dynamics. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4470. [PMID: 31756784 PMCID: PMC7342490 DOI: 10.1002/jms.4470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/04/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The first 17 amino acid residues of Huntingtin protein (Nt17 of htt) are thought to play an important role in the protein's function; Nt17 is one of two membrane binding domains in htt. In this study the binding ability of Nt17 peptide with vesicles comprised of two subclasses of phospholipids is studied using electrospray ionization - mass spectrometry (ESI-MS) and molecular dynamics (MD) simulations. Overall, the peptide is shown to have a greater propensity to interact with vesicles of phosphatidylcholine (PC) rather than phosphatidylethanolamine (PE) lipids. Mass spectra show an increase in lipid-bound peptide adducts where the ordering of the number of such specie is 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) > 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) > 1-palmitoyl-2-oleoyl-sn-glycero-3 phosphoethanolamine (POPE). MD simulations suggest that the compactness of the bilayer plays a role in governing peptide interactions. The peptide shows greater disruption of the DOPC bilayer order at the surface and interacts with the hydrophobic tails of lipid molecules via hydrophobic residues. Conversely, the POPE vesicle remains ordered and lipids display transient interactions with the peptide through the formation of hydrogen bonds with hydrophilic residues. The POPC system displays intermediate behavior with regard to the degree of peptide-membrane interaction. Finally, the simulations suggest a helix stabilizing effect resulting from the interactions between hydrophobic residues and the lipid tails of the DOPC bilayer.
Collapse
Affiliation(s)
- Ahmad Kiani Karanji
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| | - Maryssa Beasely
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| | - Daud Sharif
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| | - Ali Ranjbaran
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown WV 26506
| | - Justin Legleiter
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
- Blanchette Rockefeller Neurosciences Institute, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University, Morgantown, West Virginia 26506, United States
- NanoSAFE, P.O. Box 6223, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| |
Collapse
|
7
|
Examination of Adsorption Orientation of Amyloidogenic Peptides Over Nano-Gold Colloidal Particle Surfaces. Int J Mol Sci 2019; 20:ijms20215354. [PMID: 31661810 PMCID: PMC6862242 DOI: 10.3390/ijms20215354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 01/12/2023] Open
Abstract
The adsorption of amyloidogenic peptides, amyloid beta 1–40 (Aβ1–40), alpha-synuclein (α-syn), and beta 2 microglobulin (β2m), was attempted over the surface of nano-gold colloidal particles, ranging from d = 10 to 100 nm in diameter (d). The spectroscopic inspection between pH 2 and pH 12 successfully extracted the critical pH point (pHo) at which the color change of the amyloidogenic peptide-coated nano-gold colloids occurred due to aggregation of the nano-gold colloids. The change in surface property caused by the degree of peptide coverage was hypothesized to reflect the ΔpHo, which is the difference in pHo between bare gold colloids and peptide coated gold colloids. The coverage ratio (Θ) for all amyloidogenic peptides over gold colloid of different sizes was extracted by assuming Θ = 0 at ΔpHo = 0. Remarkably, Θ was found to have a nano-gold colloidal size dependence, however, this nano-size dependence was not simply correlated with d. The geometric analysis and simulation of reproducing Θ was conducted by assuming a prolate shape of all amyloidogenic peptides. The simulation concluded that a spiking-out orientation of a prolate was required in order to reproduce the extracted Θ. The involvement of a secondary layer was suggested; this secondary layer was considered to be due to the networking of the peptides. An extracted average distance of networking between adjacent gold colloids supports the binding of peptides as if they are “entangled” and enclosed in an interfacial distance that was found to be approximately 2 nm. The complex nano-size dependence of Θ was explained by available spacing between adjacent prolates. When the secondary layer was formed, Aβ1–40 and α-syn possessed a higher affinity to a partially negative nano-gold colloidal surface. However, β2m peptides tend to interact with each other. This difference was explained by the difference in partial charge distribution over a monomer. Both Aβ1–40 and α-syn are considered to have a partial charge (especially δ+) distribution centering around the prolate axis. The β2m, however, possesses a distorted charge distribution. For a lower Θ (i.e., Θ <0.5), a prolate was assumed to conduct a gyration motion, maintaining the spiking-out orientation to fill in the unoccupied space with a tilting angle ranging between 5° and 58° depending on the nano-scale and peptide coated to the gold colloid.
Collapse
|
8
|
Taraban MB, Deredge DJ, Smith ME, Briggs KT, Feng Y, Li Y, Jiang ZX, Wintrode PL, Yu YB. Conformational transition of a non-associative fluorinated amphiphile in aqueous solution. II. Conformational transition vs. supramolecular assembly. RSC Adv 2019; 9:1956-1966. [PMID: 35516151 PMCID: PMC9059749 DOI: 10.1039/c8ra08795d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 11/21/2022] Open
Abstract
Unlike many known amphiphiles, the fluorinated amphiphilic dendrimer studied in this work demonstrated a concentration-dependent conformational transition rather than micellization or assembly. Hydrophobic and hydrophilic interactions with water were suggested as the most probable driving force of this transition. This assumption was consistent with the observed 19F chemical shift changes of the dendrimer compared to a known micelle-forming fluorinated amphiphile. Since water is an important factor in the process, trends of the concentration-dependent changes in water proton transverse relaxation rate served as an indicator of structural changes and/or supramolecular assembly. The conformational transition process was also confirmed by ion-mobility mass-spectrometry. We suggested that structural features, namely, steric hindrances, prevented the micellization/assembly of the dendrimer of this study. This conclusion might inform the approach to develop novel unconventional amphiphiles.
Collapse
Affiliation(s)
- Marc B Taraban
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Margaret E Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Katharine T Briggs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Yue Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Yu Li
- School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei 430071 China
| | - Zhong-Xing Jiang
- School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei 430071 China
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Yihua Bruce Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| |
Collapse
|
9
|
|
10
|
Leney AC, Heck AJR. Native Mass Spectrometry: What is in the Name? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:5-13. [PMID: 27909974 PMCID: PMC5174146 DOI: 10.1007/s13361-016-1545-3] [Citation(s) in RCA: 446] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 05/11/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is nowadays one of the cornerstones of biomolecular mass spectrometry and proteomics. Advances in sample preparation and mass analyzers have enabled researchers to extract much more information from biological samples than just the molecular weight. In particular, relevant for structural biology, noncovalent protein-protein and protein-ligand complexes can now also be analyzed by MS. For these types of analyses, assemblies need to be retained in their native quaternary state in the gas phase. This initial small niche of biomolecular mass spectrometry, nowadays often referred to as "native MS," has come to maturation over the last two decades, with dozens of laboratories using it to study mostly protein assemblies, but also DNA and RNA-protein assemblies, with the goal to define structure-function relationships. In this perspective, we describe the origins of and (re)define the term native MS, portraying in detail what we meant by "native MS," when the term was coined and also describing what it does (according to us) not entail. Additionally, we describe a few examples highlighting what native MS is, showing its successes to date while illustrating the wide scope this technology has in solving complex biological questions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Aneika C Leney
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, 3584CH, Utrecht, The Netherlands.
| |
Collapse
|