1
|
Chahal J, Gebert LF, Gan HH, Camacho E, Gunsalus KC, MacRae IJ, Sagan SM. miR-122 and Ago interactions with the HCV genome alter the structure of the viral 5' terminus. Nucleic Acids Res 2019; 47:5307-5324. [PMID: 30941417 PMCID: PMC6547439 DOI: 10.1093/nar/gkz194] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive-sense RNA virus that interacts with the liver-specific microRNA, miR-122. miR-122 binds to two sites in the 5' untranslated region (UTR) and this interaction promotes HCV RNA accumulation, although the precise role of miR-122 in the HCV life cycle remains unclear. Using biophysical analyses and Selective 2' Hydroxyl Acylation analyzed by Primer Extension (SHAPE) we investigated miR-122 interactions with the 5' UTR. Our data suggests that miR-122 binding results in alteration of nucleotides 1-117 to suppress an alternative secondary structure and promote functional internal ribosomal entry site (IRES) formation. Furthermore, we demonstrate that two hAgo2:miR-122 complexes are able to bind to the HCV 5' terminus simultaneously and SHAPE analyses revealed further alterations to the structure of the 5' UTR to accommodate these complexes. Finally, we present a computational model of the hAgo2:miR-122:HCV RNA complex at the 5' terminus of the viral genome as well as hAgo2:miR-122 interactions with the IRES-40S complex that suggest hAgo2 is likely to form additional interactions with SLII which may further stabilize the HCV IRES. Taken together, our results support a model whereby hAgo2:miR-122 complexes alter the structure of the viral 5' terminus and promote formation of the HCV IRES.
Collapse
Affiliation(s)
- Jasmin Chahal
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Luca F R Gebert
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Edna Camacho
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Division of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| |
Collapse
|
2
|
Agbale CM, Cardoso MH, Galyuon IK, Franco OL. Designing metallodrugs with nuclease and protease activity. Metallomics 2017; 8:1159-1169. [PMID: 27714031 DOI: 10.1039/c6mt00133e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The accidental discovery of cisplatin some 50 years ago generated renewed interest in metallopharmaceuticals. Beyond cisplatin, many useful metallodrugs have been synthesized for the diagnosis and treatment of various diseases, but toxicity concerns, and the propensity to induce chemoresistance and secondary cancers make it imperative to search for novel metallodrugs that address these limitations. The Amino Terminal Cu(ii) and Ni(ii) (ATCUN) binding motif has emerged as a suitable template to design catalytic metallodrugs with nuclease and protease activities. Unlike their classical counterparts, ATCUN-based metallodrugs exhibit low toxicity, employ novel mechanisms to irreversibly inactivate disease-associated genes or proteins providing in principle, a channel to circumvent the rapid emergence of chemoresistance. The ATCUN motif thus presents novel strategies for the treatment of many diseases including cancers, HIV and infections caused by drug-resistant bacteria at the genetic level. This review discusses their design, mechanisms of action and potential for further development to expand their scope of application.
Collapse
Affiliation(s)
- Caleb Mawuli Agbale
- School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana and S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil. and Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil and Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Isaac Kojo Galyuon
- School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil. and Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil and Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| |
Collapse
|