1
|
Chevalier C, Dorignac J, Ibrahim Y, Choquet A, David A, Ripoll J, Rivals E, Geniet F, Walliser NO, Palmeri J, Parmeggiani A, Walter JC. Physical modeling of ribosomes along messenger RNA: Estimating kinetic parameters from ribosome profiling experiments using a ballistic model. PLoS Comput Biol 2023; 19:e1011522. [PMID: 37862386 PMCID: PMC10659217 DOI: 10.1371/journal.pcbi.1011522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/20/2023] [Accepted: 09/17/2023] [Indexed: 10/22/2023] Open
Abstract
Gene expression is the synthesis of proteins from the information encoded on DNA. One of the two main steps of gene expression is the translation of messenger RNA (mRNA) into polypeptide sequences of amino acids. Here, by taking into account mRNA degradation, we model the motion of ribosomes along mRNA with a ballistic model where particles advance along a filament without excluded volume interactions. Unidirectional models of transport have previously been used to fit the average density of ribosomes obtained by the experimental ribo-sequencing (Ribo-seq) technique in order to obtain the kinetic rates. The degradation rate is not, however, accounted for and experimental data from different experiments are needed to have enough parameters for the fit. Here, we propose an entirely novel experimental setup and theoretical framework consisting in splitting the mRNAs into categories depending on the number of ribosomes from one to four. We solve analytically the ballistic model for a fixed number of ribosomes per mRNA, study the different regimes of degradation, and propose a criterion for the quality of the inverse fit. The proposed method provides a high sensitivity to the mRNA degradation rate. The additional equations coming from using the monosome (single ribosome) and polysome (arbitrary number) ribo-seq profiles enable us to determine all the kinetic rates in terms of the experimentally accessible mRNA degradation rate.
Collapse
Affiliation(s)
- Carole Chevalier
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Jérôme Dorignac
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Yahaya Ibrahim
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
- Department of Physics, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University, Katsina, Nigeria
| | - Armelle Choquet
- Institut de Génétique Fonctionelle (IGF), Montpellier University, CNRS, Montpellier, France
| | - Alexandre David
- Institut de Génétique Fonctionelle (IGF), Montpellier University, CNRS, Montpellier, France
| | - Julie Ripoll
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Montpellier University, CNRS, Montpellier, France
| | - Eric Rivals
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Montpellier University, CNRS, Montpellier, France
| | - Frédéric Geniet
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Nils-Ole Walliser
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| |
Collapse
|
2
|
Gu Y, Mao Y, Jia L, Dong L, Qian SB. Bi-directional ribosome scanning controls the stringency of start codon selection. Nat Commun 2021; 12:6604. [PMID: 34782646 PMCID: PMC8593136 DOI: 10.1038/s41467-021-26923-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022] Open
Abstract
The fidelity of start codon recognition by ribosomes is paramount during protein synthesis. The current knowledge of eukaryotic translation initiation implies unidirectional 5'→3' migration of the pre-initiation complex (PIC) along the 5' UTR. In probing translation initiation from ultra-short 5' UTR, we report that an AUG triplet near the 5' end can be selected via PIC backsliding. Bi-directional ribosome scanning is supported by competitive selection of closely spaced AUG codons and recognition of two initiation sites flanking an internal ribosome entry site. Transcriptome-wide PIC profiling reveals footprints with an oscillation pattern near the 5' end and start codons. Depleting the RNA helicase eIF4A leads to reduced PIC oscillations and impaired selection of 5' end start codons. Enhancing the ATPase activity of eIF4A promotes nonlinear PIC scanning and stimulates upstream translation initiation. The helicase-mediated PIC conformational switch may provide an operational mechanism that unifies ribosome recruitment, scanning, and start codon selection.
Collapse
Affiliation(s)
- Yifei Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Longfei Jia
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Dong L, Mao Y, Zhou A, Liu XM, Zhou J, Wan J, Qian SB. Relaxed initiation pausing of ribosomes drives oncogenic translation. SCIENCE ADVANCES 2021; 7:7/8/eabd6927. [PMID: 33597240 PMCID: PMC7888950 DOI: 10.1126/sciadv.abd6927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/30/2020] [Indexed: 05/13/2023]
Abstract
Translation is a crucial process in cancer development and progression. Many oncogenic signaling pathways target the translation initiation stage to satisfy the increased anabolic demands of cancer cells. Using quantitative profiling of initiating ribosomes, we found that ribosomal pausing at the start codon serves as a "brake" to restrain the translational output. In response to oncogenic RAS signaling, the initiation pausing relaxes and contributes to the increased translational flux. Intriguingly, messenger RNA (mRNA) m6A modification in the vicinity of start codons influences the behavior of initiating ribosomes. Under oncogenic RAS signaling, the reduced mRNA methylation leads to relaxed initiation pausing, thereby promoting malignant transformation and tumor growth. Restored initiation pausing by inhibiting m6A demethylases suppresses RAS-mediated oncogenic translation and subsequent tumorigenesis. Our findings unveil a paradigm of translational control that is co-opted by RAS mutant cancer cells to drive malignant phenotypes.
Collapse
Affiliation(s)
- Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Aidong Zhou
- Department of Cell Biology, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Min Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jun Zhou
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ji Wan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Abstract
The emergence of genome-wide analyses to interrogate cellular DNA, RNA, and protein content has revolutionized the study of control networks that mediate cellular homeostasis. mRNA translation represents the last step of genetic flow and primarily defines the proteome. Translational regulation is thus critical for gene expression, in particular under nutrient excess or deficiency. Until recently, it was unclear how the global effects of translational control are orchestrated by nutrient signaling pathways. An emerging concept of translational reprogramming addresses how to maintain the expression of specific proteins during nutrient stress by translation of selective mRNAs. In this review, we describe recent advances in our understanding of translational control principles; nutrient-sensing mechanisms; and their dysregulation in human diseases such as diabetes, cancer, and aging. The mechanistic understanding of translational regulation in response to different nutrient conditions may help identify potential dietary and therapeutic targets to improve human health.
Collapse
Affiliation(s)
- Xin Erica Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Robert V. Swanda
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
5
|
Zhao J, Qin B, Nikolay R, Spahn CMT, Zhang G. Translatomics: The Global View of Translation. Int J Mol Sci 2019; 20:ijms20010212. [PMID: 30626072 PMCID: PMC6337585 DOI: 10.3390/ijms20010212] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
In all kingdoms of life, proteins are synthesized by ribosomes in a process referred to as translation. The amplitude of translational regulation exceeds the sum of transcription, mRNA degradation and protein degradation. Therefore, it is essential to investigate translation in a global scale. Like the other “omics”-methods, translatomics investigates the totality of the components in the translation process, including but not limited to translating mRNAs, ribosomes, tRNAs, regulatory RNAs and nascent polypeptide chains. Technical advances in recent years have brought breakthroughs in the investigation of these components at global scale, both for their composition and dynamics. These methods have been applied in a rapidly increasing number of studies to reveal multifaceted aspects of translation control. The process of translation is not restricted to the conversion of mRNA coding sequences into polypeptide chains, it also controls the composition of the proteome in a delicate and responsive way. Therefore, translatomics has extended its unique and innovative power to many fields including proteomics, cancer research, bacterial stress response, biological rhythmicity and plant biology. Rational design in translation can enhance recombinant protein production for thousands of times. This brief review summarizes the main state-of-the-art methods of translatomics, highlights recent discoveries made in this field and introduces applications of translatomics on basic biological and biomedical research.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Bo Qin
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Rainer Nikolay
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Translation complex profile sequencing to study the in vivo dynamics of mRNA–ribosome interactions during translation initiation, elongation and termination. Nat Protoc 2017; 12:697-731. [DOI: 10.1038/nprot.2016.189] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|