1
|
Boix M, Garcia-Rodriguez A, Castillo L, Miró B, Hamilton F, Tolak S, Pérez A, Monte-Bello C, Caldana C, Henriques R. 40S Ribosomal protein S6 kinase integrates daylength perception and growth regulation in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 195:3039-3052. [PMID: 38701056 PMCID: PMC11288760 DOI: 10.1093/plphys/kiae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Plant growth occurs via the interconnection of cell growth and proliferation in each organ following specific developmental and environmental cues. Therefore, different photoperiods result in distinct growth patterns due to the integration of light and circadian perception with specific Carbon (C) partitioning strategies. In addition, the TARGET OF RAPAMYCIN (TOR) kinase pathway is an ancestral signaling pathway that integrates nutrient information with translational control and growth regulation. Recent findings in Arabidopsis (Arabidopsis thaliana) have shown a mutual connection between the TOR pathway and the circadian clock. However, the mechanistical network underlying this interaction is mostly unknown. Here, we show that the conserved TOR target, the 40S ribosomal protein S6 kinase (S6K) is under circadian and photoperiod regulation both at the transcriptional and post-translational level. Total S6K (S6K1 and S6K2) and TOR-dependent phosphorylated-S6K protein levels were higher during the light period and decreased at dusk especially under short day conditions. Using chemical and genetic approaches, we found that the diel pattern of S6K accumulation results from 26S proteasome-dependent degradation and is altered in mutants lacking the circadian F-box protein ZEITLUPE (ZTL), further strengthening our hypothesis that S6K could incorporate metabolic signals via TOR, which are also under circadian regulation. Moreover, under short days when C/energy levels are limiting, changes in S6K1 protein levels affected starch, sucrose and glucose accumulation and consequently impacted root and rosette growth responses. In summary, we propose that S6K1 constitutes a missing molecular link where day-length perception, nutrient availability and TOR pathway activity converge to coordinate growth responses with environmental conditions.
Collapse
Affiliation(s)
- Marc Boix
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Alba Garcia-Rodriguez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Bernat Miró
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Ferga Hamilton
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Sanata Tolak
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Adrián Pérez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | | | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Rossana Henriques
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
2
|
Martín G, Veciana N, Boix M, Rovira A, Henriques R, Monte E. The photoperiodic response of hypocotyl elongation involves regulation of CDF1 and CDF5 activity. PHYSIOLOGIA PLANTARUM 2020; 169:480-490. [PMID: 32379360 DOI: 10.1111/ppl.13119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Hypocotyl elongation relies on directional cell expansion, a process under light and circadian clock control. Under short photoperiods (SD), hypocotyl elongation in Arabidopsis thaliana follows a rhythmic pattern, a process in which circadian morning-to-midnight waves of the transcriptional repressors PSEUDO-RESPONSE REGULATORS (PRRs) jointly gate PHYTOCHROME-INTERACTING FACTOR (PIF) activity to dawn. Previously, we described CYCLING DOF FACTOR 5 (CDF5) as a target of this antagonistic PRR/PIF dynamic interplay. Under SD, PIFs induce CDF5 accumulation specifically at dawn, when it promotes the expression of positive cell elongation regulators such as YUCCA8 to induce growth. In contrast to SD, hypocotyl elongation under long days (LD) is largely reduced. Here, we examine whether CDF5 is an actor in this photoperiod specific regulation. We report that transcription of CDF5 is robustly induced in SD compared to LD, in accordance with PIFs accumulating to higher levels in SD, and in contrast to other members of the CDF family, whose expression is mainly clock regulated and have similar waveforms in SD and LD. Notably, when CDF5 was constitutively expressed under LD, CDF5 protein accumulated to levels comparable to SD but was inactive in promoting cell elongation. Similar results were observed for CDF1. Our findings indicate that both CDFs can promote cell elongation specifically in shorter photoperiods, however, their activity in LD is inhibited at the post-translational level. These data not only expand our understanding of the biological role of CDF transcription factors, but also identify a previously unrecognized regulatory layer in the photoperiodic response of hypocotyl elongation.
Collapse
Affiliation(s)
- Guiomar Martín
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal
| | - Nil Veciana
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
| | - Marc Boix
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
| | - Arnau Rovira
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
| | - Rossana Henriques
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
| | - Elena Monte
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| |
Collapse
|
3
|
Henriques R, Wang H, Liu J, Boix M, Huang LF, Chua NH. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering. THE NEW PHYTOLOGIST 2017; 216:854-867. [PMID: 28758689 DOI: 10.1111/nph.14703] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/12/2017] [Indexed: 05/19/2023]
Abstract
Circadian rhythms of gene expression are generated by the combinatorial action of transcriptional and translational feedback loops as well as chromatin remodelling events. Recently, long noncoding RNAs (lncRNAs) that are natural antisense transcripts (NATs) to transcripts encoding central oscillator components were proposed as modulators of core clock function in mammals (Per) and fungi (frq/qrf). Although oscillating lncRNAs exist in plants, their functional characterization is at an initial stage. By screening an Arabidopsis thaliana lncRNA custom-made array we identified CDF5 LONG NONCODING RNA (FLORE), a circadian-regulated lncRNA that is a NAT of CDF5. Quantitative real-time RT-PCR confirmed the circadian regulation of FLORE, whereas GUS-staining and flowering time evaluation were used to determine its biological function. FLORE and CDF5 antiphasic expression reflects mutual inhibition in a similar way to frq/qrf. Moreover, whereas the CDF5 protein delays flowering by directly repressing FT transcription, FLORE promotes it by repressing several CDFs (CDF1, CDF3, CDF5) and increasing FT transcript levels, indicating both cis and trans function. We propose that the CDF5/FLORE NAT pair constitutes an additional circadian regulatory module with conserved (mutual inhibition) and unique (function in trans) features, able to fine-tune its own circadian oscillation, and consequently, adjust the onset of flowering to favourable environmental conditions.
Collapse
Affiliation(s)
- Rossana Henriques
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Huan Wang
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
| | - Jun Liu
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Marc Boix
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Li-Fang Huang
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
| |
Collapse
|