1
|
Duan J, Pan S, Ye Y, Hu Z, Chen L, Liang D, Fu T, Zhan L, Li Z, Liao J, Zhao X. Uncovering hidden genetic variations: long-read sequencing reveals new insights into tuberous sclerosis complex. Front Cell Dev Biol 2024; 12:1415258. [PMID: 39144255 PMCID: PMC11321964 DOI: 10.3389/fcell.2024.1415258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Tuberous sclerosis is a multi-system disorder caused by mutations in either TSC1 or TSC2. The majority of affected patients (85%-90%) have heterozygous variants, and a smaller number (around 5%) have mosaic variants. Despite using various techniques, some patients still have "no mutation identified" (NMI). METHODS We hypothesized that the causal variants of patients with NMI may be structural variants or deep intronic variants. To investigate this, we sequenced the DNA of 26 tuberous sclerosis patients with NMI using targeted long-read sequencing. RESULTS We identified likely pathogenic/pathogenic variants in 13 of the cases, of which 6 were large deletions, four were InDels, two were deep intronic variants, one had retrotransposon insertion in either TSC1 or TSC2, and one was complex rearrangement. Furthermore, there was a de novo Alu element insertion with a high suspicion of pathogenicity that was classified as a variant of unknown significance. CONCLUSION Our findings expand the current knowledge of known pathogenic variants related to tuberous sclerosis, particularly uncovering mosaic complex structural variations and retrotransposon insertions that have not been previously reported in tuberous sclerosis. Our findings suggest a higher prevalence of mosaicism among tuberous sclerosis patients than previously recognized. Our results indicate that long-read sequencing is a valuable approach for tuberous sclerosis cases with no mutation identified (NMI).
Collapse
Affiliation(s)
- Jing Duan
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | | | - Yuanzhen Ye
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Zhanqi Hu
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Li Chen
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Dachao Liang
- Shenzhen A-Smart Medical Research Center, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Tao Fu
- Shenzhen A-Smart Medical Research Center, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | | | - Zhuo Li
- Shenzhen A-Smart Medical Research Center, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Xia Zhao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Guan Y, Gao H, Leu NA, Vourekas A, Alexiou P, Maragkakis M, Kang Z, Mourelatos Z, Liang G, Wang PJ. The MOV10 RNA helicase is a dosage-dependent host restriction factor for LINE1 retrotransposition in mice. PLoS Genet 2023; 19:e1010566. [PMID: 37126510 PMCID: PMC10174503 DOI: 10.1371/journal.pgen.1010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/11/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
Transposable elements constitute nearly half of the mammalian genome and play important roles in genome evolution. While a multitude of both transcriptional and post-transcriptional mechanisms exist to silence transposable elements, control of transposition in vivo remains poorly understood. MOV10, an RNA helicase, is an inhibitor of mobilization of retrotransposons and retroviruses in cell culture assays. Here we report that MOV10 restricts LINE1 retrotransposition in mice. Although MOV10 is broadly expressed, its loss causes only incomplete penetrance of embryonic lethality, and the surviving MOV10-deficient mice are healthy and fertile. Biochemically, MOV10 forms a complex with UPF1, a key component of the nonsense-mediated mRNA decay pathway, and primarily binds to the 3' UTR of somatically expressed transcripts in testis. Consequently, loss of MOV10 results in an altered transcriptome in testis. Analyses using a LINE1 reporter transgene reveal that loss of MOV10 leads to increased LINE1 retrotransposition in somatic and reproductive tissues from both embryos and adult mice. Moreover, the degree of LINE1 retrotransposition inhibition is dependent on the Mov10 gene dosage. Furthermore, MOV10 deficiency reduces reproductive fitness over successive generations. Our findings demonstrate that MOV10 attenuates LINE1 retrotransposition in a dosage-dependent manner in mice.
Collapse
Affiliation(s)
- Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Hongyan Gao
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Anastassios Vourekas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Panagiotis Alexiou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Manolis Maragkakis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhenlong Kang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Garcia-Cañadas M, Sanchez-Luque FJ, Sanchez L, Rojas J, Garcia Perez JL. LINE-1 Retrotransposition Assays in Embryonic Stem Cells. Methods Mol Biol 2023; 2607:257-309. [PMID: 36449167 DOI: 10.1007/978-1-0716-2883-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The ongoing mobilization of active non-long terminal repeat (LTR) retrotransposons continues to impact the genomes of most mammals, including humans and rodents. Non-LTR retrotransposons mobilize using an intermediary RNA and a copy-and-paste mechanism termed retrotransposition. Non-LTR retrotransposons are subdivided into long and short interspersed elements (LINEs and SINEs, respectively), depending on their size and autonomy; while active class 1 LINEs (LINE-1s or L1s) encode the enzymatic machinery required to mobilize in cis, active SINEs use the enzymatic machinery of active LINE-1s to mobilize in trans. The mobilization mechanism used by LINE-1s/SINEs was exploited to develop ingenious plasmid-based retrotransposition assays in cultured cells, which typically exploit a reporter gene that can only be activated after a round of retrotransposition. Retrotransposition assays, in cis or in trans, are instrumental tools to study the biology of mammalian LINE-1s and SINEs. In fact, these and other biochemical/genetic assays were used to uncover that endogenous mammalian LINE-1s/SINEs naturally retrotranspose during early embryonic development. However, embryonic stem cells (ESCs) are typically used as a cellular model in these and other studies interrogating LINE-1/SINE expression/regulation during early embryogenesis. Thus, human and mouse ESCs represent an excellent model to understand how active retrotransposons are regulated and how their activity impacts the germline. Here, we describe robust and quantitative protocols to study human/mouse LINE-1 (in cis) and SINE (in trans) retrotransposition using (human and mice) ESCs. These protocols are designed to study the mobilization of active non-LTR retrotransposons in a cellular physiologically relevant context.
Collapse
Affiliation(s)
- Marta Garcia-Cañadas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain.
| | - Francisco J Sanchez-Luque
- Institute of Parasitology and Biomedicine "Lopez-Neyra" (IPBLN), Spanish National Research Council (CSIC), PTS Granada, Granada, Spain
| | - Laura Sanchez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Johana Rojas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Jose L Garcia Perez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain.
- MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC)/University of Edinburgh, Western General Hospital Campus, Edinburgh, UK.
| |
Collapse
|
4
|
Shademan M, Zare K, Zahedi M, Mosannen Mozaffari H, Bagheri Hosseini H, Ghaffarzadegan K, Goshayeshi L, Dehghani H. Promoter methylation, transcription, and retrotransposition of LINE-1 in colorectal adenomas and adenocarcinomas. Cancer Cell Int 2020; 20:426. [PMID: 32905102 PMCID: PMC7466817 DOI: 10.1186/s12935-020-01511-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The methylation of the CpG islands of the LINE-1 promoter is a tight control mechanism on the function of mobile elements. However, simultaneous quantification of promoter methylation and transcription of LINE-1 has not been performed in progressive stages of colorectal cancer. In addition, the insertion of mobile elements in the genome of advanced adenoma stage, a precancerous stage before colorectal carcinoma has not been emphasized. In this study, we quantify promoter methylation and transcripts of LINE-1 in three stages of colorectal non-advanced adenoma, advanced adenoma, and adenocarcinoma. In addition, we analyze the insertion of LINE-1, Alu, and SVA elements in the genome of patient tumors with colorectal advanced adenomas. METHODS LINE-1 hypomethylation status was evaluated by absolute quantitative analysis of methylated alleles (AQAMA) assay. To quantify the level of transcripts for LINE-1, quantitative RT-PCR was performed. To find mobile element insertions, the advanced adenoma tissue samples were subjected to whole genome sequencing and MELT analysis. RESULTS We found that the LINE-1 promoter methylation in advanced adenoma and adenocarcinoma was significantly lower than that in non-advanced adenomas. Accordingly, the copy number of LINE-1 transcripts in advanced adenoma was significantly higher than that in non-advanced adenomas, and in adenocarcinomas was significantly higher than that in the advanced adenomas. Whole-genome sequencing analysis of colorectal advanced adenomas revealed that at this stage polymorphic insertions of LINE-1, Alu, and SVA comprise approximately 16%, 51%, and 74% of total insertions, respectively. CONCLUSIONS Our correlative analysis showing a decreased methylation of LINE-1 promoter accompanied by the higher level of LINE-1 transcription, and polymorphic genomic insertions in advanced adenoma, suggests that the early and advanced polyp stages may host very important pathogenic processes concluding to cancer.
Collapse
Affiliation(s)
- Milad Shademan
- Graduate Program in Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khadijeh Zare
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91779-48974 Iran
| | - Morteza Zahedi
- Graduate Program in Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hooman Mosannen Mozaffari
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Gastroenterology and Hepatology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Bagheri Hosseini
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Gastroenterology and Hepatology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamran Ghaffarzadegan
- Pathology Department, Education and Research Department, Razavi Hospital, Mashhad, Iran
| | - Ladan Goshayeshi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91779-48974 Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Wagstaff BJ, Wang L, Lai S, Derbes RS, Roy-Engel AM. Reviving a 60 million year old LINE-1 element. GENE REPORTS 2018; 11:74-78. [PMID: 30221208 DOI: 10.1016/j.genrep.2018.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mobile elements have significantly impacted genome structure of most organisms. The continued activity of the mobile element, LINE-1 (L1), through time has contributed to the accumulation of over half a million L1 copies in the human genome. Most copies in the human genome belong to evolutionary older extinct L1s. Here we apply our previous published approach to "revive" the extinct L1 PA13A; an L1 family that was active about 60 million year ago (mya). The reconstructed L1PA13A is retrocompentent in culture, but shows a significantly lower level of activity in HeLa cells when compared to the modern L1 element (L1PA1) and a 40 million year old L1PA8. L1 elements code for two proteins (ORF1p and ORF2p) that are necessary for retrotransposition. Using PA13A-PA1 and PA13A-PA8 L1 chimeric elements, we determined that both the ORF1p and ORF2p contribute to the observed decrease in retrotransposition efficiency of L1PA13A. The lower retrotransposition rate of L1PA13A is consistent in both human and rodent cell lines. However, in rodent cells, the chimeric element L1PA:1-13 containing the modern L1PA1 ORF1p shows a recovery in the retrotransposition rate, suggestive that the L1PA13A ORF2p efficiently drives retrotransposition in these cells. The functionality of the L1PA13A ORF2p was further confirmed by demonstrating its ability to drive Alu retrotransposition in rodent cells. The variation in L1PA13A retrotransposition rates observed between rodent and human cells are suggestive that cellular environment significantly affects retrotransposition efficiency, which may be mediated through an interaction with ORF1p. Based on these observations, we speculate that the observed differences between cell lines may reflect an evolutionary adaptation of the L1 element to its host cell.
Collapse
Affiliation(s)
- Bradley J Wagstaff
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Linda Wang
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Susan Lai
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Rebecca S Derbes
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Astrid M Roy-Engel
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| |
Collapse
|
6
|
Ade CM, Derbes RS, Wagstaff BJ, Linker SB, White TB, Deharo D, Belancio VP, Ivics Z, Roy-Engel AM. Evaluating different DNA binding domains to modulate L1 ORF2p-driven site-specific retrotransposition events in human cells. Gene 2017; 642:188-198. [PMID: 29154869 DOI: 10.1016/j.gene.2017.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 12/28/2022]
Abstract
DNA binding domains (DBDs) have been used with great success to impart targeting capabilities to a variety of proteins creating highly useful genomic tools. We evaluated the ability of five types of DBDs and strategies (AAV Rep proteins, Cre, TAL effectors, zinc finger proteins, and Cas9/gRNA system) to target the L1 ORF2 protein to drive retrotransposition of Alu inserts to specific sequences in the human genome. First, we find that the L1 ORF2 protein tolerates the addition of protein domains both at the amino- and carboxy-terminus. Although in some instances retrotransposition efficiencies slightly diminished, all fusion proteins containing an intact ORF2 were capable of driving retrotransposition. Second, the stability of individual ORF2 fusion proteins varies and difficult to predict. Third, DBDs that require the formation of multimers for target recognition are unlikely to modify targeting of ORF2p-driven insertions. Fourth, the more components needed to assemble into a complex to drive targeted retrotransposition, the less likely the strategy will increase targeted insertions. Fifth, abundance of target sequences present in the genome will likely dictate the effectiveness and efficiency of targeted insertions. Lastly, the cleavage capabilities of Cas9 (or a Cas9 nickase variant) are unable to substitute for the L1 ORF2 endonuclease domain functions, suggestive that the endonuclease domain has alternate functions needed for retrotransposition. From these studies, we conclude that the most critical component for the modification of the human L1 ORF2 protein to drive targeted insertions is the selection of the DBD due to the varying functional requirements and impacts on protein stability.
Collapse
Affiliation(s)
- Catherine M Ade
- Department of Cellular and Molecular Biology, Tulane University, USA
| | - Rebecca S Derbes
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center and LCRC, 1700 Tulane Ave., New Orleans, LA 70112, USA
| | - Bradley J Wagstaff
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center and LCRC, 1700 Tulane Ave., New Orleans, LA 70112, USA
| | - Sara B Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Travis B White
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Dawn Deharo
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Astrid M Roy-Engel
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center and LCRC, 1700 Tulane Ave., New Orleans, LA 70112, USA.
| |
Collapse
|