1
|
Schaefer M, Nabih A, Spies D, Hermes V, Bodak M, Wischnewski H, Stalder P, Ngondo RP, Liechti LA, Sajic T, Aebersold R, Gatfield D, Ciaudo C. Global and precise identification of functional
miRNA
targets in
mESCs
by integrative analysis. EMBO Rep 2022; 23:e54762. [PMID: 35899551 PMCID: PMC9442311 DOI: 10.15252/embr.202254762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNA (miRNA) loaded Argonaute (AGO) complexes regulate gene expression via direct base pairing with their mRNA targets. Previous works suggest that up to 60% of mammalian transcripts might be subject to miRNA‐mediated regulation, but it remains largely unknown which fraction of these interactions are functional in a specific cellular context. Here, we integrate transcriptome data from a set of miRNA‐depleted mouse embryonic stem cell (mESC) lines with published miRNA interaction predictions and AGO‐binding profiles. Using this integrative approach, combined with molecular validation data, we present evidence that < 10% of expressed genes are functionally and directly regulated by miRNAs in mESCs. In addition, analyses of the stem cell‐specific miR‐290‐295 cluster target genes identify TFAP4 as an important transcription factor for early development. The extensive datasets developed in this study will support the development of improved predictive models for miRNA‐mRNA functional interactions.
Collapse
Affiliation(s)
- Moritz Schaefer
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Amena Nabih
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Daniel Spies
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Victoria Hermes
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Maxime Bodak
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Harry Wischnewski
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Patrick Stalder
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Richard Patryk Ngondo
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Luz Angelica Liechti
- Center for Integrative Genomics (CIG) University of Lausanne Lausanne Switzerland
| | - Tatjana Sajic
- Swiss Federal Institute of Technology Zurich, IMSB Zürich Switzerland
| | - Ruedi Aebersold
- Swiss Federal Institute of Technology Zurich, IMSB Zürich Switzerland
| | - David Gatfield
- Center for Integrative Genomics (CIG) University of Lausanne Lausanne Switzerland
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| |
Collapse
|
2
|
Müller M, Fäh T, Schaefer M, Hermes V, Luitz J, Stalder P, Arora R, Ngondo RP, Ciaudo C. AGO1 regulates pericentromeric regions in mouse embryonic stem cells. Life Sci Alliance 2022; 5:e202101277. [PMID: 35236760 PMCID: PMC8897595 DOI: 10.26508/lsa.202101277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/09/2023] Open
Abstract
Argonaute proteins (AGOs), which play an essential role in cytosolic post-transcriptional gene silencing, have been also reported to function in nuclear processes like transcriptional activation or repression, alternative splicing and, chromatin organization. As most of these studies have been conducted in human cancer cell lines, the relevance of AGOs nuclear functions in the context of mouse early embryonic development remains uninvestigated. Here, we examined a possible role of the AGO1 protein on the distribution of constitutive heterochromatin in mouse embryonic stem cells (mESCs). We observed a specific redistribution of the repressive histone mark H3K9me3 and the heterochromatin protein HP1α, away from pericentromeric regions upon Ago1 depletion. Furthermore, we demonstrated that major satellite transcripts are strongly up-regulated in Ago1_KO mESCs and that their levels are partially restored upon AGO1 rescue. We also observed a similar redistribution of H3K9me3 and HP1α in Drosha_KO mESCs, suggesting a role for microRNAs (miRNAs) in the regulation of heterochromatin distribution in mESCs. Finally, we showed that specific miRNAs with complementarity to major satellites can partially regulate the expression of these transcripts.
Collapse
Affiliation(s)
- Madlen Müller
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Tara Fäh
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Moritz Schaefer
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Victoria Hermes
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Janina Luitz
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Patrick Stalder
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Rajika Arora
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Richard Patryk Ngondo
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| |
Collapse
|
3
|
Huang Y, Xu F, Mei S, Liu X, Zhao F, Wei L, Fan Z, Hu Y, Wang L, Ai B, Cen S, Liang C, Guo F. MxB inhibits long interspersed element type 1 retrotransposition. PLoS Genet 2022; 18:e1010034. [PMID: 35171907 PMCID: PMC8849481 DOI: 10.1371/journal.pgen.1010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Long interspersed element type 1 (LINE-1, also L1 for short) is the only autonomously transposable element in the human genome. Its insertion into a new genomic site may disrupt the function of genes, potentially causing genetic diseases. Cells have thus evolved a battery of mechanisms to tightly control LINE-1 activity. Here, we report that a cellular antiviral protein, myxovirus resistance protein B (MxB), restricts the mobilization of LINE-1. This function of MxB requires the nuclear localization signal located at its N-terminus, its GTPase activity and its ability to form oligomers. We further found that MxB associates with LINE-1 protein ORF1p and promotes sequestration of ORF1p to G3BP1-containing cytoplasmic granules. Since knockdown of stress granule marker proteins G3BP1 or TIA1 abolishes MxB inhibition of LINE-1, we conclude that MxB engages stress granule components to effectively sequester LINE-1 proteins within the cytoplasmic granules, thus hindering LINE-1 from accessing the nucleus to complete retrotransposition. Thus, MxB protein provides one mechanism for cells to control the mobility of retroelements. Retrotransposons occupy more than 40% of human genome, and have co-evolved with humans for millions of years. Long interspersed element type 1 (LINE-1, or L1) is the only retrotransposon that is able to jump to a new locus. LINE-1 retrotransposition causes genome instability, and is associated with genetic diseases including autoimmune diseases and cancer. To suppress this genome toxicity caused by LINE-1, humans have developed multi-layered mechanisms to control LINE-1 activity. MxB has been previously shown to inhibit LINE-1 mobility, thus contributing to host restriction of LINE-1. Here, we further demonstrate that MxB effectively restricts LINE-1 retrotransposition by sequestering LINE-1 ribonucleoprotein (RNP) within the cytoplasmic stress granules, thus guards genome stability. Hence our data attribute the restriction function of MxB to sequestering LINE-1 RNP to stress granules.
Collapse
Affiliation(s)
- Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xiaoman Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Zhangling Fan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yamei Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Liming Wang
- Department of Medical Oncology, Beijing Hospital, Beijing, P. R. China
| | - Bin Ai
- Department of Medical Oncology, Beijing Hospital, Beijing, P. R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Chen Liang
- McGill Centre for Viral Diseases, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- * E-mail: (CL); (FG)
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- * E-mail: (CL); (FG)
| |
Collapse
|
4
|
Ngondo RP, Cohen-Tannoudji M, Ciaudo C. Fast In Vitro Procedure to Identify Extraembryonic Differentiation Defect of Mouse Embryonic Stem Cells. STAR Protoc 2020; 1:100127. [PMID: 33377021 PMCID: PMC7756973 DOI: 10.1016/j.xpro.2020.100127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) are a powerful model to study early mouse development. These blastocyst-derived cells can maintain pluripotency and differentiate into the three embryonic germ layers and an extraembryonic layer, the extraembryonic endoderm (ExEn), which shares similar molecular markers to the definitive endoderm. Here, we present a fast procedure to identify a differentiation defect of mESCs toward ExEn in vitro through the molecular and cellular characterization of embryoid bodies, followed by direct differentiation of mESCs into ExEn. For complete details on the use and execution of this protocol, please refer to Ngondo et al. (2018).
Collapse
Affiliation(s)
- Richard Patryk Ngondo
- University of Strasbourg, Strasbourg, France.,Institut de Biologie Moléculaire des Plantes UPR-CNRS 2357, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Michel Cohen-Tannoudji
- Early Mammalian Development and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, 75015 Paris, France
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Bodak M, Yu J, Ciaudo C. Regulation of LINE-1 Elements by miR-128 Is Not Conserved in Mouse Embryonic Stem Cells. Front Genet 2018; 9:683. [PMID: 30619491 PMCID: PMC6306448 DOI: 10.3389/fgene.2018.00683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Maxime Bodak
- Department of Biology, Swiss Federal Institute of Technology Zurich, IMHS, Zurich, Switzerland
| | - Jian Yu
- Department of Biology, Swiss Federal Institute of Technology Zurich, IMHS, Zurich, Switzerland
| | - Constance Ciaudo
- Department of Biology, Swiss Federal Institute of Technology Zurich, IMHS, Zurich, Switzerland
| |
Collapse
|
6
|
Bodak M, Cirera-Salinas D, Yu J, Ngondo RP, Ciaudo C. Dicer, a new regulator of pluripotency exit and LINE-1 elements in mouse embryonic stem cells. FEBS Open Bio 2017; 7:204-220. [PMID: 28174687 PMCID: PMC5292673 DOI: 10.1002/2211-5463.12174] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
A gene regulation network orchestrates processes ensuring the maintenance of cellular identity and genome integrity. Small RNAs generated by the RNAse III DICER have emerged as central players in this network. Moreover, deletion of Dicer in mice leads to early embryonic lethality. To better understand the underlying mechanisms leading to this phenotype, we generated Dicer‐deficient mouse embryonic stem cells (mESCs). Their detailed characterization revealed an impaired differentiation potential, and incapacity to exit from the pluripotency state. We also observed a strong accumulation of LINE‐1 (L1s) transcripts, which was translated at protein level and led to an increased L1s retrotransposition. Our findings reveal Dicer as a new essential player that sustains mESCs self‐renewal and genome integrity by controlling L1s regulation.
Collapse
Affiliation(s)
- Maxime Bodak
- Department of Biology RNAi and Genome Integrity IMHS Swiss Federal Institute of Technology Zurich Zurich Switzerland; Life Science Zurich Graduate School Molecular Life Science Program University of Zurich Switzerland
| | - Daniel Cirera-Salinas
- Department of Biology RNAi and Genome Integrity IMHS Swiss Federal Institute of Technology Zurich Zurich Switzerland
| | - Jian Yu
- Department of Biology RNAi and Genome Integrity IMHS Swiss Federal Institute of Technology Zurich Zurich Switzerland; Life Science Zurich Graduate School Molecular and Translational Biomedicine Program University of Zurich Switzerland
| | - Richard P Ngondo
- Department of Biology RNAi and Genome Integrity IMHS Swiss Federal Institute of Technology Zurich Zurich Switzerland
| | - Constance Ciaudo
- Department of Biology RNAi and Genome Integrity IMHS Swiss Federal Institute of Technology Zurich Zurich Switzerland
| |
Collapse
|