1
|
Mátis G, Sebők C, Horváth DG, Márton RA, Mackei M, Vörösházi J, Kemény Á, Neogrády Z, Varga I, Tráj P. Miniature chicken ileal explant culture to investigate the inflammatory response induced by pathogen-associated molecular patterns. Front Vet Sci 2025; 12:1484333. [PMID: 40171408 PMCID: PMC11960747 DOI: 10.3389/fvets.2025.1484333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/17/2025] [Indexed: 04/03/2025] Open
Abstract
Gastrointestinal inflammation leads to maldigestion and systemic diseases in poultry. To tackle the problem of the industry and to search for therapeutic candidates in vitro models are inevitable. Both immersion and air-liquid interface explant models are available, although there is limited information on the size-dependent applicability and response to different pathogen-associated molecular patterns (PAMPs) in the case of these model systems. The study aimed to compare the morphology and viability of miniature chicken gut explant cultures obtained with a biopsy punch to examine the size-dependent change over time. To verify the applicability of the model, pathogen-associated molecular patterns (PAMPs): flagellin, lipoteichoic acid (LTA) and polyinosinic polycytidylic acid (poly I:C) were applied to induce inflammation. The 2 mm diameter explants showed a decrease in metabolic activity measured by CCK-8 assay after 12 h and a significantly higher extracellular lactate dehydrogenase activity indicating cellular damage compared to the 1 mm explants, supported by histological differences after 24 h of culturing. After 12 h of incubation, the 1.5 mm explants retained columnar epithelial lining with moderate damage of the lamina propria (H&E and pan-cytokeratin staining). Exposure to 100 μg/mL poly I:C reduced the metabolic activity of the 1.5 mm explants. LTA and poly I:C increased IFN-γ concentration at both applied doses and IFN-α concentration was elevated by 50 μg/mL poly I:C treatment. Flagellin administration raised IL-2, IL-6, and RANTES levels, while higher LTA and poly I:C concentrations increased the IFN-γ/IL-10 ratio. According to the observations, the viability and integrity of the explants decreases with their size. After 12 h, the 1.5 mm diameter miniature chicken ileal explant stimulated with PAMPs can be an appropriate model to mimic diseases involving tissue damage and inflammation.
Collapse
Affiliation(s)
- Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Dávid G. Horváth
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Ágnes Kemény
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Ilona Varga
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
2
|
Runggaldier D, Pradas LG, Neckel PH, Mack AF, Hirt B, Gleiser C. Claudin expression in the rat endolymphatic duct and sac - first insights into regulation of the paracellular barrier by vasopressin. Sci Rep 2017; 7:45482. [PMID: 28374851 PMCID: PMC5379655 DOI: 10.1038/srep45482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Hearing and balance functions of the inner ear rely on the homeostasis of the endolymphatic fluid. When disturbed, pathologic endolymphatic hydrops evolves as observed in Menière’s disease. The molecular basis of inner ear fluid regulation across the endolymphatic epithelium is largely unknown. In this study we identified the specific expression of the tight junction (TJ) molecules Claudin 3, 4, 6, 7, 8, 10, and 16 in epithelial preparations of the rat inner ear endolymphatic duct (ED) and endolymphatic sac (ES) by high-throughput qPCR and immunofluorescence confocal microscopy. Further we showed that Claudin 4 in the ES is a target of arginine-vasopressin (AVP), a hormone elevated in Menière’s disease. Moreover, our transmission-electron microscopy (TEM) analysis revealed that the TJs of the ED were shallow and shorter compared to the TJ of the ES indicating facilitation of a paracellular fluid transport across the ED epithelium. The significant differences in the subcellular localization of the barrier-forming protein Claudin 3 between the ED and ES epithelium further support the TEM observations. Our results indicate a high relevance of Claudin 3 and Claudin 4 as important paracellular barrier molecules in the ED and ES epithelium with potential involvement in the pathophysiology of Menière’s disease.
Collapse
Affiliation(s)
- Daniel Runggaldier
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Lidia Garcia Pradas
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Corinna Gleiser
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|