1
|
Wang C, Chen Z, Copenhaver GP, Wang Y. Heterochromatin in plant meiosis. Nucleus 2024; 15:2328719. [PMID: 38488152 PMCID: PMC10950279 DOI: 10.1080/19491034.2024.2328719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Heterochromatin is an organizational property of eukaryotic chromosomes, characterized by extensive DNA and histone modifications, that is associated with the silencing of transposable elements and repetitive sequences. Maintaining heterochromatin is crucial for ensuring genomic integrity and stability during the cell cycle. During meiosis, heterochromatin is important for homologous chromosome synapsis, recombination, and segregation, but our understanding of meiotic heterochromatin formation and condensation is limited. In this review, we focus on the dynamics and features of heterochromatin and how it condenses during meiosis in plants. We also discuss how meiotic heterochromatin influences the interaction and recombination of homologous chromosomes during prophase I.
Collapse
Affiliation(s)
- Cong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhiyu Chen
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yingxiang Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
2
|
Kianian PMA, Wang M, Simons K, Ghavami F, He Y, Dukowic-Schulze S, Sundararajan A, Sun Q, Pillardy J, Mudge J, Chen C, Kianian SF, Pawlowski WP. High-resolution crossover mapping reveals similarities and differences of male and female recombination in maize. Nat Commun 2018; 9:2370. [PMID: 29915302 PMCID: PMC6006299 DOI: 10.1038/s41467-018-04562-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/04/2018] [Indexed: 12/19/2022] Open
Abstract
Meiotic crossovers (COs) are not uniformly distributed across the genome. Factors affecting this phenomenon are not well understood. Although many species exhibit large differences in CO numbers between sexes, sex-specific aspects of CO landscape are particularly poorly elucidated. Here, we conduct high-resolution CO mapping in maize. Our results show that CO numbers as well as their overall distribution are similar in male and female meioses. There are, nevertheless, dissimilarities at local scale. Male and female COs differ in their locations relative to transcription start sites in gene promoters and chromatin marks, including nucleosome occupancy and tri-methylation of lysine 4 of histone H3 (H3K4me3). Our data suggest that sex-specific factors not only affect male–female CO number disparities but also cause fine differences in CO positions. Differences between male and female CO landscapes indicate that recombination has distinct implications for population structure and gene evolution in male and in female meioses. Sex-specific meiotic crossover (CO) landscapes have been identified in multiple species. Here, the authors show that male and female meioses in maize have similar CO landscapes, and differences between COs in the two sexes only exists in their location relative to transcription start sites and some chromatin marks.
Collapse
Affiliation(s)
- Penny M A Kianian
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Minghui Wang
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.,Bioinformatics Facility, Cornell University, Ithaca, NY, 14853, USA
| | - Kristin Simons
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Farhad Ghavami
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.,Eurofins BioDiagnostics, River Falls, WI, 54022, USA
| | - Yan He
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.,National Maize Improvement Center, China Agricultural University, Beijing, China
| | | | | | - Qi Sun
- Bioinformatics Facility, Cornell University, Ithaca, NY, 14853, USA
| | | | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Wojciech P Pawlowski
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|