1
|
Garadi Suresh H, Bonneil E, Albert B, Dominique C, Costanzo M, Pons C, Masinas MPD, Shuteriqi E, Shore D, Henras AK, Thibault P, Boone C, Andrews BJ. K29-linked free polyubiquitin chains affect ribosome biogenesis and direct ribosomal proteins to the intranuclear quality control compartment. Mol Cell 2024; 84:2337-2352.e9. [PMID: 38870935 PMCID: PMC11193623 DOI: 10.1016/j.molcel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/25/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the intranuclear quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with ribosomopathies.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Benjamin Albert
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland; Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Myra Paz David Masinas
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ermira Shuteriqi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
2
|
Sparks A, Kelly CJ, Saville MK. Ubiquitin receptors play redundant roles in the proteasomal degradation of the p53 repressor MDM2. FEBS Lett 2022; 596:2746-2767. [PMID: 35735670 PMCID: PMC9796813 DOI: 10.1002/1873-3468.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 01/07/2023]
Abstract
Much remains to be determined about the participation of ubiquitin receptors in proteasomal degradation and their potential as therapeutic targets. Suppression of the ubiquitin receptor S5A/PSMD4/hRpn10 alone stabilises p53/TP53 but not the key p53 repressor MDM2. Here, we observed S5A and the ubiquitin receptors ADRM1/PSMD16/hRpn13 and RAD23A and B functionally overlap in MDM2 degradation. We provide further evidence that degradation of only a subset of ubiquitinated proteins is sensitive to S5A knockdown because ubiquitin receptor redundancy is commonplace. p53 can be upregulated by S5A modulation while degradation of substrates with redundant receptors is maintained. Our observations and analysis of Cancer Dependency Map (DepMap) screens show S5A depletion/loss substantially reduces cancer cell line viability. This and selective S5A dependency of proteasomal substrates make S5A a target of interest for cancer therapy.
Collapse
Affiliation(s)
| | - Christopher J. Kelly
- School of MedicineUniversity of DundeeUK,Institute of Infection, Immunity and InflammationUniversity of GlasgowUK
| | - Mark K. Saville
- School of MedicineUniversity of DundeeUK,Silver River EditingDundeeUK
| |
Collapse
|
3
|
Dongdem JT, Dawson SP, Layfield R. Modification of small ubiquitin-related modifier 2 (SUMO2) by phosphoubiquitin in HEK293T cells. Proteomics 2021; 21:e2000234. [PMID: 34086420 DOI: 10.1002/pmic.202000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022]
Abstract
Additional complexity in the post-translational modification of proteins by ubiquitin is achieved by ubiquitin phosphorylation, for example within PINK1-parkin mediated mitophagy. We performed a preliminary proteomic analysis to identify proteins differentially modified by ubiquitin in HEK293T, compared to phosphomimetic ubiquitin (Ser65Asp), and identified small ubiquitin-related modifier 2 (SUMO2) as a candidate. By transfecting SUMO2 and its C-terminal-GG deletion mutant, along with phosphomimetic ubiquitin, we confirm that ubiquitin modifies SUMO2, rather than vice versa. Further investigations revealed that transfected SUMO2 can also be conjugated by endogenous phospho-Ser65-(poly)ubiquitin in HEK293T cells, pointing to a previously unappreciated level of complexity in SUMO2 modification, and that unanchored (substrate-free) polyubiquitin chains may also be subject to phosphorylation.
Collapse
Affiliation(s)
- Julius T Dongdem
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK.,Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Ghana
| | - Simon P Dawson
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Robert Layfield
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
4
|
Miyake Y, Matthias P, Yamauchi Y. Purification of Unanchored Polyubiquitin Chains from Influenza Virions. Methods Mol Biol 2018; 1836:329-342. [PMID: 30151581 DOI: 10.1007/978-1-4939-8678-1_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Influenza A virus (IAV) is an enveloped virus with a segmented single-stranded negative-strand RNA genome. In general, the role of virally encapsidated host cell proteins in the viral life cycle is unclear. The virion contains abundant ubiquitin molecules some of which have been identified as unanchored polyubiquitin chains. These ubiquitin chains have been postulated to play a role in recruiting histone deacetylase 6 (HDAC6) to the cytosolic surface of late endosomes (LEs), promoting IAV uncoating via aggresome processing-a cellular machinery that disposes of protein waste. HDAC6, a class II HDAC, is unusual because it resides mostly in the cytosol instead of the nucleus. It is a unique protein consisting of two catalytic domains (CDs) and a zinc-finger ubiquitin-binding domain (ZnF-UBP) close to its C-terminus. This ZnF-UBP recognizes the unconjugated ubiquitin C-terminus (di-Gly motif) with very high affinity. Biochemical analyses showed that free di-Gly motifs are present in the form of unanchored ubiquitin inside IAV virions. These motifs are exposed following low pH-triggered viral fusion at the LEs and attract HDAC6 transiently to the cytosolic surface of vesicles. The binding of the two components promotes viral uncoating via HDAC6 interaction with cellular motor proteins dynein and myosin II and the viral M1 capsid. The cellular mechanism involved is related to aggresome processing, a pathway that promotes degradation of misfolded protein aggregates. K63-linked ubiquitin chains are thought to be the trigger for aggresome processing, though it is still not clear whether such types of chains are prevalent within the IAV capsid. Here, we present methods using purified ZnF-UBP domain of HDAC6 to immunoprecipitate viral unanchored ubiquitin chains, which can then be used for further biochemical analyses of ubiquitin chain linkage.
Collapse
Affiliation(s)
- Yasuyuki Miyake
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|