1
|
Hsu GCY, Marini S, Negri S, Wang Y, Xu J, Pagani C, Hwang C, Stepien D, Meyers CA, Miller S, McCarthy E, Lyons KM, Levi B, James AW. Endogenous CCN family member WISP1 inhibits trauma-induced heterotopic ossification. JCI Insight 2020; 5:135432. [PMID: 32484792 DOI: 10.1172/jci.insight.135432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
Heterotopic ossification (HO) is defined as abnormal differentiation of local stromal cells of mesenchymal origin, resulting in pathologic cartilage and bone matrix deposition. Cyr61, CTGF, Nov (CCN) family members are matricellular proteins that have diverse regulatory functions on cell proliferation and differentiation, including the regulation of chondrogenesis. However, little is known regarding CCN family member expression or function in HO. Here, a combination of bulk and single-cell RNA sequencing defined the dynamic temporospatial pattern of CCN family member induction within a mouse model of trauma-induced HO. Among CCN family proteins, Wisp1 (also known as Ccn4) was most upregulated during the evolution of HO, and Wisp1 expression corresponded with chondrogenic gene profile. Immunohistochemistry confirmed WISP1 expression across traumatic and genetic HO mouse models as well as in human HO samples. Transgenic Wisp1LacZ/LacZ knockin animals showed an increase in endochondral ossification in HO after trauma. Finally, the transcriptome of Wisp1-null tenocytes revealed enrichment in signaling pathways, such as the STAT3 and PCP signaling pathways, that may explain increased HO in the context of Wisp1 deficiency. In sum, CCN family members, and in particular Wisp1, are spatiotemporally associated with and negatively regulate trauma-induced HO formation.
Collapse
Affiliation(s)
| | - Simone Marini
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chase Pagani
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles Hwang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - David Stepien
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah Miller
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Edward McCarthy
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karen M Lyons
- Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
2
|
Characterization of bone morphology in CCN5/WISP5 knockout mice. J Cell Commun Signal 2018; 12:265-270. [PMID: 29396648 DOI: 10.1007/s12079-018-0457-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022] Open
Abstract
CCN5/WISP2 is part of the CCN family of matricellular proteins, but is distinct in that it lacks the C-terminal (CT) domain. Although CCN5 has been shown to impact cell proliferation and differentiation in vitro, its role in vivo is unclear. We therefore generated mice using ES cells developed by the Knockout Mouse Project (KOMP) in which exons 2-5, which encode the all of the conserved protein coding regions, are replaced by a lacZ cassette. Ccn5 LacZ/LacZ mice were viable and apparently normal. Based on previous studies showing that CCN5 impacts osteoblast proliferation and differentiation, we performed an analysis of adult bone phenotype. LacZ expression was examined in adult bone, and was found to be strong within the periosteum, but not in trabecular bone or bone marrow. Micro-CT analysis revealed no apparent changes in bone mineral density (BMD) or bone tissue volume (BV/TV) in Ccn5 LacZ/LacZ mice. These studies indicate that CCN5 is not required for normal bone formation, but they do not rule out a role in mechanotransduction or repair processes. The availability of Ccn5 LacZ mice enables studies of CCN5 expression and function in multiple tissues.
Collapse
|