1
|
Hua K, Liu D, Xu Q, Peng Y, Sun Y, He R, Luo R, Jin H. The role of hormones in the regulation of lactogenic immunity in porcine and bovine species. Domest Anim Endocrinol 2024; 88:106851. [PMID: 38733944 DOI: 10.1016/j.domaniend.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Colostrum and milk offer a complete diet and vital immune protection for newborn mammals with developing immune systems. High immunoglobulin levels in colostrum serve as the primary antibody source for newborn piglets and calves. Subsequent milk feeding support continued local antibody protection against enteric pathogens, as well as maturation of the developing immune system and provide nutrients for newborn growth. Mammals have evolved hormonal strategies that modulate the levels of immunoglobulins in colostrum and milk to facilitate effective lactational immunity. In addition, hormones regulate the gut-mammary gland-secretory immunoglobulin A (sIgA) axis in pregnant mammals, controlling the levels of sIgA in milk, which serves as the primary source of IgA for piglets and helps them resist pathogens such as PEDV and TGEV. In the present study, we review the existing studies on the interactions between hormones and the gut-mammary-sIgA axis/lactogenic immunity in mammals and explore the potential mechanisms of hormonal regulation that have not been studied in detail, to draw attention to the role of hormones in influencing the immune response of pregnant and lactating mammals and their offspring, and highlight the effect of hormones in regulating sIgA-mediated anti-infection processes in colostrum and milk. Discussion of the relationship between hormones and lactogenic immunity may lead to a better way of improving lactogenic immunity by determining a better injection time and developing new vaccines.
Collapse
Affiliation(s)
- Kexin Hua
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Qianshuai Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Yuna Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Yu Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Rongrong He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
2
|
Lobular Breast Cancer: Histomorphology and Different Concepts of a Special Spectrum of Tumors. Cancers (Basel) 2021; 13:cancers13153695. [PMID: 34359596 PMCID: PMC8345067 DOI: 10.3390/cancers13153695] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Invasive lobular breast cancer (ILC) is a special type of breast cancer (BC) that was first described in 1941. The diagnosis of ILC is made by microscopy of tumor specimens, which reveals a distinct morphology. This review recapitulates the developments in the microscopic assessment of ILC from 1941 until today. We discuss different concepts of ILC, provide an overview on ILC variants, and highlight advances which have contributed to a better understanding of ILC as a special histologic spectrum of tumors. Abstract Invasive lobular breast cancer (ILC) is the most common special histological type of breast cancer (BC). This review recapitulates developments in the histomorphologic assessment of ILC from its beginnings with the seminal work of Foote and Stewart, which was published in 1941, until today. We discuss different concepts of ILC and their implications. These concepts include (i) BC arising from mammary lobules, (ii) BC growing in dissociated cells and single files, and (iii) BC defined as a morpho-molecular spectrum of tumors with distinct histological and molecular characteristics related to impaired cell adhesion. This review also provides a comprehensive overview of ILC variants, their histomorphology, and differential diagnosis. Furthermore, this review highlights recent advances which have contributed to a better understanding of the histomorphology of ILC, such as the role of the basal lamina component laminin, the molecular specificities of triple-negative ILC, and E-cadherin to P-cadherin expression switching as the molecular determinant of tubular elements in CDH1-deficient ILC. Last but not least, we provide a detailed account of the tumor microenvironment in ILC, including tumor infiltrating lymphocyte (TIL) levels, which are comparatively low in ILC compared to other BCs, but correlate with clinical outcome. The distinct histomorphology of ILC clearly reflects a special tumor biology. In the clinic, special treatment strategies have been established for triple-negative, HER2-positive, and ER-positive BC. Treatment specialization for patients diagnosed with ILC is just in its beginnings. Accordingly, ILC deserves greater attention as a special tumor entity in BC diagnostics, patient care, and cancer research.
Collapse
|
3
|
Frank-Kamenetskii A, Mook J, Reeves M, Boulanger CA, Meyer TJ, Ragle L, Jordan HC, Smith GH, Booth BW. Induction of phenotypic changes in HER2-postive breast cancer cells in vivo and in vitro. Oncotarget 2020; 11:2919-2929. [PMID: 32774772 PMCID: PMC7392627 DOI: 10.18632/oncotarget.27679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
The influence of breast cancer cells on normal cells of the microenvironment, such as fibroblasts and macrophages, has been heavily studied but the influence of normal epithelial cells on breast cancer cells has not. Here using in vivo and in vitro models we demonstrate the impact epithelial cells and the mammary microenvironment can exert on breast cancer cells. Under specific conditions, signals that originate in epithelial cells can induce phenotypic and genotypic changes in cancer cells. We have termed this phenomenon "cancer cell redirection." Once breast cancer cells are redirected, either in vivo or in vitro, they lose their tumor forming capacity and undergo a genetic expression profile shift away from one that supports a cancer profile towards one that supports a non-tumorigenic epithelial profile. These findings indicate that epithelial cells and the normal microenvironment influence breast cancer cells and that under certain circumstances restrict proliferation of tumorigenic cells.
Collapse
Affiliation(s)
| | - Julia Mook
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Meredith Reeves
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Corinne A. Boulanger
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lauren Ragle
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Gilbert H. Smith
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Brian W. Booth
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- These authors contributed equally to this work
| |
Collapse
|
4
|
Xu X, Chen E, Mo L, Zhang L, Shao F, Miao K, Liu J, Su SM, Valecha M, Chan UI, Zheng H, Chen M, Chen W, Chen Q, Fu H, Aladjem MI, He Y, Deng CX. BRCA1 represses DNA replication initiation through antagonizing estrogen signaling and maintains genome stability in parallel with WEE1-MCM2 signaling during pregnancy. Hum Mol Genet 2020; 28:842-857. [PMID: 30445628 DOI: 10.1093/hmg/ddy398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/16/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022] Open
Abstract
The mammary gland undergoes fast cell proliferation during early pregnancy, yet the mechanism to ensure genome integrity during this highly proliferative stage is largely unknown. We show that pregnancy triggers replicative stresses leading to genetic instability in mice carrying a mammary specific disruption of breast cancer associated gene-1 (BRCA1). The fast cell proliferation was correlated with enhanced expression of most genes encoding replisomes, which are positively regulated by estrogen/ERα signaling but negatively regulated by BRCA1. Our further analysis revealed two parallel signaling pathways, which are mediated by ATR-CHK1 and WEE1-MCM2 and are responsible for regulating DNA replication checkpoint. Upon DNA damage, BRCA1 deficiency markedly enhances DNA replication initiation and preferably impairs DNA replication checkpoint mediated by ATR and CHK1. Meanwhile, DNA damage also activates WEE1-MCM2 signaling, which inhibits DNA replication initiation and enables BRCA1-deficient cells to avoid further genomic instability. Finally, we demonstrated that overriding this defense by WEE1 inhibition in combination with cisplatin, which causes DNA damage, serves as a promising therapeutic approach for killing BRCA1-deficient cancer cells.
Collapse
Affiliation(s)
- Xiaoling Xu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Eric Chen
- Genetics of Development and Disease Branch
| | - Lihua Mo
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lei Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Fangyuan Shao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Kai Miao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jianlin Liu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Sek Man Su
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Monica Valecha
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Un In Chan
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | | | - Mark Chen
- Genetics of Development and Disease Branch
| | - Weiping Chen
- Gene Expression Core, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Qiang Chen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Haiqing Fu
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanzhen He
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
5
|
Zhu H, Jia X, Ren M, Yang L, Chen J, Han L, Ding Y, Ding M. Mifepristone Treatment in Pregnant Murine Model Induced Mammary Gland Dysplasia and Postpartum Hypogalactia. Front Cell Dev Biol 2020; 8:102. [PMID: 32154252 PMCID: PMC7047202 DOI: 10.3389/fcell.2020.00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Mammary gland dysplasia and postpartum hypogalactia often occur in humans and in the livestock breeding industry. However, their underlying mechanisms are not clear yet. Mifepristone, which has a high affinity for progesterone (P4) and glucocorticoid receptors, was exploited here to induce the disorders of mammary gland development and lactation. Four strategies were devised for treating pregnant mice with mifepristone. In the first strategy, mice were administered 1.20 mg mifepristone/kg body weight (BW) on pregnancy day 4 (Pd4). In the second strategy, mifepristone was administered to mice twice, with 1.20 mg/kg BW on Pd4 and 0.40 mg/kg BW on Pd8. In the third strategy, mice were treated with a single dose of 0.40 mg mifepristone/kg BW on Pd8. In the fourth strategy, mice were administered 0.40 mg mifepristone/kg BW on Pd8 and 0.20 mg mifepristone/kg BW on Pd12. The results suggested that mifepristone administration at the dose of 1.20 mg/kg BW on Pd4 caused significant reduction in milk production on lactation day 1 (Ld1), Ld2, and Ld3, as assessed using a weigh-suckle-weigh assay. Mammary β-casein expression, milk yields, litter growth rates, gland structure, and serum concentrations of 17-β estrogen (E2), P4, prolactin (PRL), growth hormone (GH), corticosterone (CORT) and oxytocin (OT) as well as the receptors of these hormones were determined during pregnancy or lactation after performing the first (Pd4) strategy. The results demonstrated that mifepristone administration during early pregnancy decreased β-casein expression, milk yields and litter growth rates, induced fewer alveoli, enlarged alveolar lumina, and altered the levels of E2, P4, PRL, GH, CORT, and OT as well as the mRNA expression of these hormonal receptors during pregnancy or early lactation. The present study on pregnant mice treated with mifepristone offers an innovative murine model to study the mechanism underlying mammary gland dysplasia and postpartum hypogalactia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Frank-Kamenetskii A, Booth BW. Redirecting Normal and Cancer Stem Cells to a Mammary Epithelial Cell Fate. J Mammary Gland Biol Neoplasia 2019; 24:285-292. [PMID: 31732837 DOI: 10.1007/s10911-019-09439-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
Tissue microenvironments, also known as stem cell niches, influence not only resident cells but also cells in surrounding tissues. Physical and biochemical intercellular signals originating from resident stem cells or non-stem cells participate in the homeostasis of the tissue regulating cell proliferation, differentiation, wound healing, tissue remodeling, and tumorigenesis. In recent publications it has been demonstrated that the normal mouse mammary microenvironment can provide development and differentiation guidance to not only resident mammary cells but also cells of non-mammary origin including tumor-derived cells. When placed in reforming mammary stem cell niches the non-mammary cells proliferate and differentiate along mammary epithelial cell lineages and contribute progeny to reforming mammary gland outgrowths. The tumor-derived cells that are redirected to assume mammary epithelial phenotypes lose their cancer-forming capacity and shift their gene expression profiles from a cancer profile towards a normal mammary epithelial expression profile. This review summarizes the recent discoveries regarding the ability of the normal mouse mammary microenvironment to dictate the cell fates of non-mammary cells introduced into mammary stem cell niches.
Collapse
Affiliation(s)
- Anastasia Frank-Kamenetskii
- Department of Bioengineering, Clemson University, 401-1 Rhodes Engineering Research Center, Clemson, SC, 29634, USA
| | - Brian W Booth
- Department of Bioengineering, Clemson University, 401-1 Rhodes Engineering Research Center, Clemson, SC, 29634, USA.
| |
Collapse
|
7
|
Jimenez-Rojo L, Pagella P, Harada H, Mitsiadis TA. Dental Epithelial Stem Cells as a Source for Mammary Gland Regeneration and Milk Producing Cells In Vivo. Cells 2019; 8:cells8101302. [PMID: 31652655 PMCID: PMC6830078 DOI: 10.3390/cells8101302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
The continuous growth of rodent incisors is ensured by clusters of mesenchymal and epithelial stem cells that are located at the posterior part of these teeth. Genetic lineage tracing studies have shown that dental epithelial stem cells (DESCs) are able to generate all epithelial cell populations within incisors during homeostasis. However, it remains unclear whether these cells have the ability to adopt alternative fates in response to extrinsic factors. Here, we have studied the plasticity of DESCs in the context of mammary gland regeneration. Transplantation of DESCs together with mammary epithelial cells into the mammary stroma resulted in the formation of chimeric ductal epithelial structures in which DESCs adopted all the possible mammary fates including milk-producing alveolar cells. In addition, when transplanted without mammary epithelial cells, DESCs developed branching rudiments and cysts. These in vivo findings demonstrate that when outside their niche, DESCs redirect their fates according to their new microenvironment and thus can contribute to the regeneration of non-dental tissues.
Collapse
Affiliation(s)
- Lucia Jimenez-Rojo
- Department of Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland.
| | - Pierfrancesco Pagella
- Department of Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland.
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University Yahaba, Morioka 020-0023, Japan.
| | - Thimios A Mitsiadis
- Department of Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland.
| |
Collapse
|
8
|
Chatterjee SJ, Halaoui R, Deagle RC, Rejon C, McCaffrey L. Numb regulates cell tension required for mammary duct elongation. Biol Open 2019; 8:bio.042341. [PMID: 31036751 PMCID: PMC6550071 DOI: 10.1242/bio.042341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mammary gland undergoes extensive expansion of a ductal network through the stroma during puberty and is an excellent model for understanding epithelial tube morphogenesis. To investigate a role for Numb, a multifaceted adapter protein, in epithelial tube morphogenesis, we conditionally deleted it from the mammary epithelium. We report that Numb-depletion results in altered extracellular-matrix organization, reduced cell tension, altered cell shape, and increased cell packing density, which results in a 50% reduction in mammary duct elongation. Using laser ablation in vitro and geometric-based cell force inference in vivo, we determined that Numb-deficient cells have altered cortical tension. Duct elongation defects were associated with altered E-cadherin distribution, but were independent of proliferation, apoptosis in ducts or end buds. This highlights a critical role for Numb in a mechanical mechanism that is required to maintain cell packing density during epithelial tube elongation.
Collapse
Affiliation(s)
- Sudipa June Chatterjee
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Ruba Halaoui
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Rebecca Catherine Deagle
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.,Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Carlis Rejon
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada .,Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada
| |
Collapse
|
9
|
Zhao J, Han Y, Ma X, Zhou Y, Yuan S, Shen Q, Ye G, Liu H, Fu P, Zhang G, Qiao B, Liu A. Cysteine Dioxygenase Regulates the Epithelial Morphogenesis of Mammary Gland via Cysteine Sulfinic Acid. iScience 2019; 13:173-189. [PMID: 30849621 PMCID: PMC6406049 DOI: 10.1016/j.isci.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/18/2022] Open
Abstract
Epithelial morphogenesis is a common feature in various organs and contributes to functional formation. However, the molecular mechanisms behind epithelial morphogenesis remain largely unknown. Mammary gland is an excellent model system to investigate the molecular mechanisms of epithelial morphogenesis. In this study, we found that cysteine dioxygenase (CDO), a key enzyme in cysteine oxidative metabolism, was involved in mammary epithelial morphogenesis. CDO knockout (KO) females exhibited severe defects in mammary branching morphogenesis and ductal elongation, resulting in poor lactation. CDO contributes to the luminal epithelial cell differentiation, proliferation, and apoptosis mainly through its downstream product cysteine sulfinic acid (CSA). Exogenous supplementation of CSA not only rescued the defects in CDO KO mouse but also enhanced ductal growth in wild-type mouse. It suggests that CDO regulates luminal epithelial differentiation and regeneration via CSA and consequently contributes to mammary development, which raises important implications for epithelial morphogenesis and pathogenesis of breast cancer. Cysteine dioxygenase (CDO) is necessary for mammary epithelial morphogenesis Cysteine sulfinic acid (CSA) supplementation rescues the mammary defects in CDO KO mouse CDO retains lumen character and maintains luminal cell differentiation via CSA CDO maintains epithelial cell renewal via CSA
Collapse
Affiliation(s)
- Jianjun Zhao
- College of Animal Science, Southwest University, Chongqing, China.
| | - Yuzhu Han
- College of Animal Science, Southwest University, Chongqing, China
| | - Xingyu Ma
- College of Animal Science, Southwest University, Chongqing, China
| | - Yang Zhou
- College of Animal Science, Southwest University, Chongqing, China
| | - Shukai Yuan
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Shen
- Department of Microbiology, Ohio State University, Columbus, OH, United States
| | - Guogen Ye
- College of Animal Science, Southwest University, Chongqing, China
| | - Hongrun Liu
- College of Animal Science, Southwest University, Chongqing, China
| | - Penghui Fu
- College of Animal Science, Southwest University, Chongqing, China
| | - Gongwei Zhang
- College of Animal Science, Southwest University, Chongqing, China
| | - Bingke Qiao
- College of Animal Science, Southwest University, Chongqing, China
| | - Anfang Liu
- College of Animal Science, Southwest University, Chongqing, China.
| |
Collapse
|
10
|
Finot L, Chanat E, Dessauge F. Molecular signature of the putative stem/progenitor cells committed to the development of the bovine mammary gland at puberty. Sci Rep 2018; 8:16194. [PMID: 30385815 PMCID: PMC6212573 DOI: 10.1038/s41598-018-34691-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Milk production is highly dependent on the extensive development of the mammary epithelium, which occurs during puberty. It is therefore essential to distinguish the epithelial cells committed to development from the related epithelial hierarchy. Using cell phenotyping and sorting, we highlighted four cell sub-populations within the bovine mammary gland at puberty. The CD49fhighCD24neg cells expressing CD10, KRT14, vimentin and PROCR corresponded to cells committed to the basal lineage. The CD49flow sub-population contained two cell subsets (CD49flowCD24neg and CD49flowCD24pos). Both subsets expressed hormone receptors including ER, PR and PRLR, as well as ALDH1 activity but only the CD49flowCD24pos subset expressed ELF5. These data indicated that the CD49flow sub-population is mainly composed of cells displaying a luminal phenotype and that this population comprises two luminal cell subsets, namely the CD24neg and CD24pos cells, likely committed to ductal and alveolar lineage, respectively. The putative mammary stem cell (MaSC) fraction was recovered in the CD49fhighCD24pos sub-population which were shown to form mammospheres in vitro. These cells differentially expressed CD10, KRT14 and KRT7, suggesting the existence of several putative MaSC sub-fractions. In-depth characterization of these epithelial sub-populations provides new insights into the bovine mammary epithelial cell lineage and suggests a common developmental lineage in mammals.
Collapse
Affiliation(s)
- Laurence Finot
- UMR 1348 PEGASE, Agrocampus Ouest, INRA, Saint-Gilles, France
| | - Eric Chanat
- UMR 1348 PEGASE, Agrocampus Ouest, INRA, Saint-Gilles, France
| | | |
Collapse
|
11
|
Michalak EM, Milevskiy MJG, Joyce RM, Dekkers JF, Jamieson PR, Pal B, Dawson CA, Hu Y, Orkin SH, Alexander WS, Lindeman GJ, Smyth GK, Visvader JE. Canonical PRC2 function is essential for mammary gland development and affects chromatin compaction in mammary organoids. PLoS Biol 2018; 16:e2004986. [PMID: 30080881 PMCID: PMC6095611 DOI: 10.1371/journal.pbio.2004986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/16/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
Distinct transcriptional states are maintained through organization of chromatin, resulting from the sum of numerous repressive and active histone modifications, into tightly packaged heterochromatin versus more accessible euchromatin. Polycomb repressive complex 2 (PRC2) is the main mammalian complex responsible for histone 3 lysine 27 trimethylation (H3K27me3) and is integral to chromatin organization. Using in vitro and in vivo studies, we show that deletion of Suz12, a core component of all PRC2 complexes, results in loss of H3K27me3 and H3K27 dimethylation (H3K27me2), completely blocks normal mammary gland development, and profoundly curtails progenitor activity in 3D organoid cultures. Through the application of mammary organoids to bypass the severe phenotype associated with Suz12 loss in vivo, we have explored gene expression and chromatin structure in wild-type and Suz12-deleted basal-derived organoids. Analysis of organoids led to the identification of lineage-specific changes in gene expression and chromatin structure, inferring cell type-specific PRC2-mediated gene silencing of the chromatin state. These expression changes were accompanied by cell cycle arrest but not lineage infidelity. Together, these data indicate that canonical PRC2 function is essential for development of the mammary gland through the repression of alternate transcription programs and maintenance of chromatin states.
Collapse
Affiliation(s)
- Ewa M. Michalak
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael J. G. Milevskiy
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Rachel M. Joyce
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Johanna F. Dekkers
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul R. Jamieson
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Bhupinder Pal
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Caleb A. Dawson
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yifang Hu
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Stuart H. Orkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Warren S. Alexander
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Geoffrey J. Lindeman
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- Familial Cancer Centre, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Gordon K. Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E. Visvader
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Subramani R, Lakshmanaswamy R. Pregnancy and Breast Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:81-111. [PMID: 29096898 DOI: 10.1016/bs.pmbts.2017.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Breast cancer is the most commonly diagnosed type of cancer among women worldwide. The majority of breast cancers are sporadic and the etiology is not well understood. Several factors have been attributed to altering the risk of breast cancer. A full-term pregnancy is a crucial factor in altering the risk. Early full-term pregnancy has been shown to reduce the lifetime risk of breast cancer, while a later first full-term pregnancy increases breast cancer risk. Epidemiological and experimental data demonstrate that spontaneous or induced abortions do not significantly alter the risk of breast cancer. In this study, we briefly discuss the different types and stages of breast cancer, various risk factors, and potential mechanisms involved in early full-term pregnancy-induced protection against breast cancer. Understanding how early full-term pregnancy induces protection against breast cancer will help design innovative preventive and therapeutic strategies. This understanding can also help in the development of molecular biomarkers that can be of tremendous help in predicting the risk of breast cancer in the general population.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Paul L. Foster School of Medicine, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States.
| |
Collapse
|