1
|
Sánchez-Morán H, Kaar JL, Schwartz DK. Supra-biological performance of immobilized enzymes enabled by chaperone-like specific non-covalent interactions. Nat Commun 2024; 15:2299. [PMID: 38485940 PMCID: PMC10940687 DOI: 10.1038/s41467-024-46719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Designing complex synthetic materials for enzyme immobilization could unlock the utility of biocatalysis in extreme environments. Inspired by biology, we investigate the use of random copolymer brushes as dynamic immobilization supports that enable supra-biological catalytic performance of immobilized enzymes. This is demonstrated by immobilizing Bacillus subtilis Lipase A on brushes doped with aromatic moieties, which can interact with the lipase through multiple non-covalent interactions. Incorporation of aromatic groups leads to a 50 °C increase in the optimal temperature of lipase, as well as a 50-fold enhancement in enzyme activity. Single-molecule FRET studies reveal that these supports act as biomimetic chaperones by promoting enzyme refolding and stabilizing the enzyme's folded and catalytically active state. This effect is diminished when aromatic residues are mutated out, suggesting the importance of π-stacking and π-cation interactions for stabilization. Our results underscore how unexplored enzyme-support interactions may enable uncharted opportunities for using enzymes in industrial biotransformations.
Collapse
Affiliation(s)
- Héctor Sánchez-Morán
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Campus Box 596, Boulder, CO, 80309, USA
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Campus Box 596, Boulder, CO, 80309, USA.
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Campus Box 596, Boulder, CO, 80309, USA.
| |
Collapse
|
2
|
Shen J, Salmon S. Biocatalytic Membranes for Carbon Capture and Utilization. MEMBRANES 2023; 13:membranes13040367. [PMID: 37103794 PMCID: PMC10146961 DOI: 10.3390/membranes13040367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/12/2023]
Abstract
Innovative carbon capture technologies that capture CO2 from large point sources and directly from air are urgently needed to combat the climate crisis. Likewise, corresponding technologies are needed to convert this captured CO2 into valuable chemical feedstocks and products that replace current fossil-based materials to close the loop in creating viable pathways for a renewable economy. Biocatalytic membranes that combine high reaction rates and enzyme selectivity with modularity, scalability, and membrane compactness show promise for both CO2 capture and utilization. This review presents a systematic examination of technologies under development for CO2 capture and utilization that employ both enzymes and membranes. CO2 capture membranes are categorized by their mode of action as CO2 separation membranes, including mixed matrix membranes (MMM) and liquid membranes (LM), or as CO2 gas-liquid membrane contactors (GLMC). Because they selectively catalyze molecular reactions involving CO2, the two main classes of enzymes used for enhancing membrane function are carbonic anhydrase (CA) and formate dehydrogenase (FDH). Small organic molecules designed to mimic CA enzyme active sites are also being developed. CO2 conversion membranes are described according to membrane functionality, the location of enzymes relative to the membrane, which includes different immobilization strategies, and regeneration methods for cofactors. Parameters crucial for the performance of these hybrid systems are discussed with tabulated examples. Progress and challenges are discussed, and perspectives on future research directions are provided.
Collapse
|
3
|
Kikani BA, Suthar S, Joshi D. Nanomaterials: An efficient support to immobilize microbial α–amylases for improved starch hydrolysis. STARCH-STARKE 2022. [DOI: 10.1002/star.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bhavtosh A. Kikani
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| | - Sadikhusain Suthar
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| | - Disha Joshi
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| |
Collapse
|
4
|
Kikani BA, Singh SP. Amylases from thermophilic bacteria: structure and function relationship. Crit Rev Biotechnol 2021; 42:325-341. [PMID: 34420464 DOI: 10.1080/07388551.2021.1940089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Amylases hydrolyze starch to diverse products including dextrins and progressively smaller polymers of glucose units. Thermally stable amylases account for nearly 25% of the enzyme market. This review highlights the structural attributes of the α-amylases from thermophilic bacteria. Heterologous expression of amylases in suitable hosts is discussed in detail. Further, specific value maximization approaches, such as protein engineering and immobilization of the amylases are discussed in order to improve its suitability for varied applications on a commercial scale. The review also takes into account of the immobilization of the amylases on nanomaterials to increase the stability and reusability of the enzymes. The function-based metagenomics would provide opportunities for searching amylases with novel characteristics. The review is expected to explore novel amylases for future potential applications.
Collapse
Affiliation(s)
- Bhavtosh A Kikani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India.,P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| |
Collapse
|
5
|
Wolny A, Chrobok A. Ionic Liquids for Development of Heterogeneous Catalysts Based on Nanomaterials for Biocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2030. [PMID: 34443861 PMCID: PMC8399483 DOI: 10.3390/nano11082030] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
The development of effective methods of enzyme stabilization is key for the evolution of biocatalytic processes. An interesting approach combines the stabilization process of proteins in ionic liquids and the immobilization of the active phase on the solid support. As a result, stable, active and heterogeneous biocatalysts are obtained. There are several benefits associated with heterogeneous processes, as easy separation of the biocatalyst from the reaction mixture and the possibility of recycling. Accordingly, this work focused on the supported ionic liquid phases as the efficient enzyme stabilization carriers, and their application in both continuous flow and batch biocatalytic processes.
Collapse
Affiliation(s)
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland;
| |
Collapse
|
6
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
7
|
Mani P, Fidal VT, Keshavarz T, Chandra TS, Kyazze G. Laccase Immobilization Strategies for Application as a Cathode Catalyst in Microbial Fuel Cells for Azo Dye Decolourization. Front Microbiol 2021; 11:620075. [PMID: 33537019 PMCID: PMC7847978 DOI: 10.3389/fmicb.2020.620075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 01/31/2023] Open
Abstract
Enzymatic biocathodes have the potential to replace platinum as an expensive catalyst for the oxygen reduction reaction in microbial fuel cells (MFCs). However, enzymes are fragile and prone to loss of activity with time. This could be circumvented by using suitable immobilization techniques to maintain the activity and increase longevity of the enzyme. In the present study, laccase from Trametes versicolor was immobilized using three different approaches, i.e., crosslinking with electropolymerized polyaniline (PANI), entrapment in copper alginate beads (Cu-Alg), and encapsulation in Nafion micelles (Nafion), in the absence of redox mediators. These laccase systems were employed in cathode chambers of MFCs for decolourization of Acid orange 7 (AO7) dye. The biocatalyst in the anode chamber was Shewanella oneidensis MR-1 in each case. The enzyme in the immobilized states was compared with freely suspended enzyme with respect to dye decolourization at the cathode, enzyme activity retention, power production, and reusability. PANI laccase showed the highest stability and activity, producing a power density of 38 ± 1.7 mW m−2 compared to 25.6 ± 2.1 mW m−2 for Nafion laccase, 14.7 ± 1.04 mW m−2 for Cu-Alg laccase, and 28 ± 0.98 mW m−2 for the freely suspended enzyme. There was 81% enzyme activity retained after 1 cycle (5 days) for PANI laccase compared to 69% for Nafion and 61.5% activity for Cu-alginate laccase and 23.8% activity retention for the freely suspended laccase compared to initial activity. The dye decolourization was highest for freely suspended enzyme with over 85% decolourization whereas for PANI it was 75.6%, Nafion 73%, and 81% Cu-alginate systems, respectively. All the immobilized laccase systems were reusable for two more cycles. The current study explores the potential of laccase immobilized biocathode for dye decolourization in a microbial fuel cell.
Collapse
Affiliation(s)
| | - V T Fidal
- Department of Biotechnology, Indian Institute of Technology (Madras), Chennai, India
| | - Taj Keshavarz
- School of Life Sciences, University of Westminster, London, United Kingdom
| | - T S Chandra
- Department of Biotechnology, Indian Institute of Technology (Madras), Chennai, India
| | - Godfrey Kyazze
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
8
|
Demirci S, Sahiner M, Yilmaz S, Karadag E, Sahiner N. Enhanced enzymatic activity and stability by in situ entrapment of α-Glucosidase within super porous p(HEMA) cryogels during synthesis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00534. [PMID: 33024715 PMCID: PMC7528077 DOI: 10.1016/j.btre.2020.e00534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/08/2020] [Accepted: 09/25/2020] [Indexed: 01/09/2023]
Abstract
Here, poly(2-hydroxyethyl methacrylate) (p(HEMA)) cryogel were prepared in the presence 0.48, 0.96, and 1.92 mL of α-Glucosidase enzyme (0.06 Units/mL) solutions to obtain enzyme entrapped superporous p(HEMA) cryogels, donated as α-Glucosidase@p(HEMA)-1, α-Glucosidase@p(HEMA)-2, and α-Glucosidase@p(HEMA)-3, respectively. The enzyme entrapped p(HEMA) cryogels revealed no interruption for hemolysis and coagulation of blood rendering viable biomedical application in blood contacting applications. The α-Glucosidase@p(HEMA)-1 was found to preserve its' activity% 92.3 ± 1.4 % and higher activity% against free α-Glucosidase enzymes in 15-60℃ temperature, and 4-9 pH range. The Km and Vmax values of α-Glucosidase@p(HEMA)-1 cryogel was calculated as 3.22 mM, and 0.0048 mM/min, respectively versus 1.97 mM, and 0.0032 mM/min, for free enzymes. The α-Glucosidase@p(HEMA)-1 cryogel was found to maintained enzymatic activity more than 50 % after 10 consecutive uses, and also preserved their activity more than 50 % after 10 days of storage at 25 ℃, whereas free α-Glucosidase enzyme maintained only 1.9 ± 0.9 % activity under the same conditions.
Collapse
Affiliation(s)
- Sahin Demirci
- Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
- Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
| | - Mehtap Sahiner
- Department of Fashion Design, Faculty of Canakkale Applied Science, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
| | - Selehattin Yilmaz
- Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
| | - Erdener Karadag
- Department of Chemistry, Faculty of Sciences and Arts, Aydın Adnan Menderes University, 09010, Aydın, Turkey
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
- Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
- Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL, 33620 USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Affiliation(s)
- Mesut Işık
- Department of Pharmacy ServicesVocational School of Health ServicesHarran University Şanlıurfa 63300 Turkey
| |
Collapse
|
10
|
Tang J, Yan X, Engelbrekt C, Ulstrup J, Magner E, Xiao X, Zhang J. Development of graphene-based enzymatic biofuel cells: A minireview. Bioelectrochemistry 2020; 134:107537. [PMID: 32361268 DOI: 10.1016/j.bioelechem.2020.107537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022]
Abstract
Enzymatic biofuel cells (EBFCs) have attracted increasing attention due to their potential to harvest energy from a wide range of fuels under mild conditions. Fabrication of effective bioelectrodes is essential for the practical application of EBFCs. Graphene possesses unique physiochemical properties making it an attractive material for the construction of EBFCs. Despite these promising properties, graphene has not been used for EBFCs as frequently as carbon nanotubes, another nanoscale carbon allotrope. This review focuses on current research progress in graphene-based electrodes, including electrodes modified with graphene derivatives and graphene composites, as well as free-standing graphene electrodes. Particular features of graphene-based electrodes such as high conductivity, mechanical flexibility and high porosity for bioelectrochemical applications are highlighted. Reports on graphene-based EBFCs from the last five years are summarized, and perspectives for graphene-based EBFCs are offered.
Collapse
Affiliation(s)
- Jing Tang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xiaomei Yan
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Christian Engelbrekt
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark; Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Xinxin Xiao
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| |
Collapse
|
11
|
Wang Y, Le LTHL, Yoo W, Lee CW, Kim KK, Lee JH, Kim TD. Characterization, immobilization, and mutagenesis of a novel cold-active acetylesterase (EaAcE) from Exiguobacterium antarcticum B7. Int J Biol Macromol 2019; 136:1042-1051. [PMID: 31229546 DOI: 10.1016/j.ijbiomac.2019.06.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/07/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022]
Abstract
Cold-active enzymes with distinctive properties from a psychrophilic Exiguobacterium antarcticum B7 could be excellent biocatalysts in industrial and biotechnological processes. Here, the characterization, immobilization, and site-directed mutagenesis of a novel cold-active acetylesterase (EaAcE) from E. antarcticum B7 is reported. EaAcE does not belong to any currently known lipase/esterase family, although there are some sequence similarities with family III and V members. Biochemical characterization of EaAcE was carried out using activity staining, mass spectrometry analysis, circular dichroism spectra, freeze-thaw experiments, kinetic analysis, acetic acid release assays, and enantioselectivity determination. Furthermore, immobilization of EaAcE using four different approaches was explored to enhance its thermal stability and recyclability. Based on a homology model of EaAcE, four mutations (F45A, S118A, S141A, and T216A) within the substrate-binding pocket were investigated to elucidate their roles in EaAcE catalysis and substrate specificity. This work has provided invaluable information on the properties of EaAcE, which can now be used to understand the acetylesterase enzyme family.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Ly Thi Huong Luu Le
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon, Republic of Korea
| | - T Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
12
|
Seenuvasan M, Vinodhini G, Malar CG, Balaji N, Kumar KS. Magnetic nanoparticles: a versatile carrier for enzymes in bio-processing sectors. IET Nanobiotechnol 2018; 12:535-548. [PMID: 30095410 PMCID: PMC8676490 DOI: 10.1049/iet-nbt.2017.0041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/21/2017] [Accepted: 07/17/2017] [Indexed: 08/01/2023] Open
Abstract
Many industrial processes experience the advantages of enzymes which evolved the demand for enzymatic technologies. The enzyme immobilisation technology using different carriers has trustworthy applications in industrial biotechnology as these techniques encompass varied advantages such as enhanced stability, activity along with reusability. Immobilisation onto nanomaterial is highly favourable as it includes almost all aspects of science. Among the various techniques of immobilisation, the uses of nanoparticles are remarkably well perceived as these possess high-specific surface area leading to high enzyme loadings. The magnetic nanoparticles (MNPs) are burgeoning in the field of immobilisation as it possess some of the unique properties such as high surface area to volume ratio, uniform particle size, biocompatibility and particularly the recovery of enzymes with the application of an external magnetic field. Immobilisation of industrially important enzymes onto nanoparticles offers overall combined benefits. In this review, the authors here focus on the current scenario in synthesis and functionalisation of MNPs which makes it more compatible for the enzyme immobilisation and its application in the biotechnological industries.
Collapse
Affiliation(s)
| | | | - Carlin Geor Malar
- Department of Chemical Engineering, SSN College of Engineering, Chennai, India
| | - Nagarajan Balaji
- Department of Biotechnology, Madha Engineering College, Chennai, India
| | | |
Collapse
|
13
|
Sewczyk T, Hoog Antink M, Maas M, Kroll S, Beutel S. Flow rate dependent continuous hydrolysis of protein isolates. AMB Express 2018; 8:18. [PMID: 29429128 PMCID: PMC5812119 DOI: 10.1186/s13568-018-0548-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/05/2018] [Indexed: 11/10/2022] Open
Abstract
Food protein hydrolysates are often produced in unspecific industrial batch processes. The hydrolysates composition underlies process-related fluctuations and therefore the obtained peptide fingerprint and bioactive properties may vary. To overcome this obstacle and enable the production of specific hydrolysates with selected peptides, a ceramic capillary system was developed and characterized for the continuous production of a consistent peptide composition. Therefore, the protease Alcalase was immobilized on the surface of aminosilane modified yttria stabilized zirconia capillaries with a pore size of 1.5 µm. The loading capacity was 0.3 µg enzyme per mg of capillary with a residual enzyme activity of 43%. The enzyme specific peptide fingerprint produced with this proteolytic capillary reactor system correlated with the degree of hydrolysis, which can be controlled over the residence time by adjusting the flow rate. Common food proteins like casein, sunflower and lupin protein isolates were tested for continuous hydrolysis in the developed reactor system. The peptide formation was investigated by high-performance liquid chromatography. Various trends were found for the occurrence of specific peptides. Some are just intermediately occurring, while others cumulate by time. Thus, the developed continuous reactor system enables the production of specific peptides with desired bioactive properties.
Collapse
Affiliation(s)
- Tim Sewczyk
- Institute for Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Marieke Hoog Antink
- Advanced Ceramics, University Bremen, Am Biologischen Garten 2, 28359, Bremen, Germany
| | - Michael Maas
- Advanced Ceramics, University Bremen, Am Biologischen Garten 2, 28359, Bremen, Germany
| | - Stephen Kroll
- Institute for Bioplastics and Biocomposites, Hochschule Hannover, Heisterbergallee 12, 30453, Hannover, Germany
| | - Sascha Beutel
- Institute for Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167, Hannover, Germany.
| |
Collapse
|
14
|
Kumar V, Dangi AK, Shukla P. Engineering Thermostable Microbial Xylanases Toward its Industrial Applications. Mol Biotechnol 2018; 60:226-235. [DOI: 10.1007/s12033-018-0059-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|