1
|
Han JK, Shin Y, Kim HS. Direct Conversion of Cell Fate and Induced Endothelial Cells. Circ J 2021; 86:1925-1933. [PMID: 34732599 DOI: 10.1253/circj.cj-21-0703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Advances in nuclear reprogramming technology have enabled the dedifferentiation and transdifferentiation of mammalian cells. Forced induction of the key transcription factors constituting a transcriptional network can convert cells back to their pluripotent status or directly to another cell fate without inducing pluripotency. To date, direct conversion to several cell types, including cardiomyocytes, various types of neurons, and pancreatic β-cells, has been reported. We previously demonstrated direct lineage reprogramming of adult fibroblasts into induced endothelial cells (iECs) in mice and humans. In contrast to induced pluripotent stem cells, for which there is consensus on the criteria defining pluripotency, such criteria have not yet been established in the field of direct conversion. We thus suggest that careful assessment of the status of converted cells using genetic and epigenetic profiling, various functional assays, and the use of multiple readouts is essential to determine successful conversion. As direct conversion does not go through pluripotent status, this technique can be utilized for therapeutic purposes without the risk of tumorigenesis. Further, direct conversion can be induced in vivo by gene delivery to the target tissue or organ in situ. Thus, direct conversion technology can be developed into cell therapy or gene therapy for regenerative purposes. Here, we review the potential and future directions of direct cell fate conversion and iECs.
Collapse
Affiliation(s)
- Jung-Kyu Han
- Department of Internal Medicine, and Strategic Center of Cell and Bio Therapy for Heart, Diabetes and Cancer, Seoul National University Hospital
| | - Youngchul Shin
- Department of Internal Medicine, and Strategic Center of Cell and Bio Therapy for Heart, Diabetes and Cancer, Seoul National University Hospital
| | - Hyo-Soo Kim
- Department of Internal Medicine, and Strategic Center of Cell and Bio Therapy for Heart, Diabetes and Cancer, Seoul National University Hospital
| |
Collapse
|
2
|
Siri-Angkul N, Dadfar B, Jaleel R, Naushad J, Parambathazhath J, Doye AA, Xie LH, Gwathmey JK. Calcium and Heart Failure: How Did We Get Here and Where Are We Going? Int J Mol Sci 2021; 22:ijms22147392. [PMID: 34299010 PMCID: PMC8306046 DOI: 10.3390/ijms22147392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and prevalence of heart failure remain high in the United States as well as globally. One person dies every 30 s from heart disease. Recognizing the importance of heart failure, clinicians and scientists have sought better therapeutic strategies and even cures for end-stage heart failure. This exploration has resulted in many failed clinical trials testing novel classes of pharmaceutical drugs and even gene therapy. As a result, along the way, there have been paradigm shifts toward and away from differing therapeutic approaches. The continued prevalence of death from heart failure, however, clearly demonstrates that the heart is not simply a pump and instead forces us to consider the complexity of simplicity in the pathophysiology of heart failure and reinforces the need to discover new therapeutic approaches.
Collapse
Affiliation(s)
- Natthaphat Siri-Angkul
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Behzad Dadfar
- Department of General Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari 1471655836, Iran
| | - Riya Jaleel
- School of International Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jazna Naushad
- Weill Cornell Medicine Qatar, Doha P. O. Box 24144, Qatar
| | | | | | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Judith K. Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +973-972-2411; Fax: +973-972-7489
| |
Collapse
|
3
|
Bezzerides VJ, Caballero A, Wang S, Ai Y, Hylind RJ, Lu F, Heims-Waldron DA, Chambers KD, Zhang D, Abrams DJ, Pu WT. Gene Therapy for Catecholaminergic Polymorphic Ventricular Tachycardia by Inhibition of Ca 2+/Calmodulin-Dependent Kinase II. Circulation 2019; 140:405-419. [PMID: 31155924 PMCID: PMC7274838 DOI: 10.1161/circulationaha.118.038514] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited cardiac arrhythmia characterized by adrenergically triggered arrhythmias, is inadequately treated by current standard of care. Ca2+/calmodulin-dependent protein kinase II (CaMKII), an adrenergically activated kinase that contributes to arrhythmogenesis in heart disease models, is a candidate therapeutic target in CPVT. However, translation of CaMKII inhibition has been limited by the need for selective CaMKII inhibition in cardiomyocytes. Here, we tested the hypothesis that CaMKII inhibition with a cardiomyocyte-targeted gene therapy strategy would suppress arrhythmia in CPVT mouse models. METHODS We developed AAV9-GFP-AIP, an adeno-associated viral vector in which a potent CaMKII inhibitory peptide, autocamtide-2-related inhibitory peptide [AIP], is fused to green fluorescent protein (GFP) and expressed from a cardiomyocyte selective promoter. The vector was delivered systemically. Arrhythmia burden was evaluated with invasive electrophysiology testing in adult mice. AIP was also tested on induced pluripotent stem cells derived from patients with CPVT with different disease-causing mutations to determine the effectiveness of our proposed therapy on human induced pluripotent stem cell-derived cardiomyocytes and different pathogenic genotypes. RESULTS AAV9-GFP-AIP was robustly expressed in the heart without significant expression in extracardiac tissues, including the brain. Administration of AAV9-GFP-AIP to neonatal mice with a known CPVT mutation (RYR2R176Q/+) effectively suppressed ventricular arrhythmias induced by either β-adrenergic stimulation or programmed ventricular pacing, without significant proarrhythmic effect. Intravascular delivery of AAV9-GFP-AIP to adolescent mice transduced ≈50% of cardiomyocytes and was effective in suppressing arrhythmia in CPVT mice. Induced pluripotent stem cell-derived cardiomyocytes derived from 2 different patients with CPVT with different pathogenic mutations demonstrated increased frequency of abnormal calcium release events, which was suppressed by a cell-permeable form of AIP. CONCLUSIONS This proof-of-concept study showed that AAV-mediated delivery of a CaMKII peptide inhibitor to the heart was effective in suppressing arrhythmias in a murine model of CPVT. CaMKII inhibition also reversed the arrhythmia phenotype in human CPVT induced pluripotent stem cell-derived cardiomyocyte models with different pathogenic mutations.
Collapse
Affiliation(s)
- Vassilios J Bezzerides
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Ana Caballero
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Suya Wang
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Yulan Ai
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Robyn J Hylind
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Fujian Lu
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Danielle A Heims-Waldron
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Kristina D Chambers
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Donghui Zhang
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Dominic J Abrams
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - William T Pu
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.).,Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| |
Collapse
|
4
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018. [PMID: 30425651 DOI: 10.3389/fphys.2018.01517, 10.3389/fpls.2018.01517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
5
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018; 9:1517. [PMID: 30425651 PMCID: PMC6218530 DOI: 10.3389/fphys.2018.01517] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
6
|
Flotte TR, Daniels E, Benson J, Bevett-Rose JM, Cornetta K, Diggins M, Johnston J, Sepelak S, van der Loo JCM, Wilson JM, McDonald CL. The Gene Therapy Resource Program: A Decade of Dedication to Translational Research by the National Heart, Lung, and Blood Institute. HUM GENE THER CL DEV 2017; 28:178-186. [PMID: 29130351 PMCID: PMC5733658 DOI: 10.1089/humc.2017.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022] Open
Abstract
Over a 10-year period, the Gene Therapy Resource Program (GTRP) of the National Heart Lung and Blood Institute has provided a set of core services to investigators to facilitate the clinical translation of gene therapy. These services have included a preclinical (research-grade) vector production core; current Good Manufacturing Practice clinical-grade vector cores for recombinant adeno-associated virus and lentivirus vectors; a pharmacology and toxicology core; and a coordinating center to manage program logistics and to provide regulatory and financial support to early-phase clinical trials. In addition, the GTRP has utilized a Steering Committee and a Scientific Review Board to guide overall progress and effectiveness and to evaluate individual proposals. These resources have been deployed to assist 82 investigators with 172 approved service proposals. These efforts have assisted in clinical trial implementation across a wide range of genetic, cardiac, pulmonary, and blood diseases. Program outcomes and potential future directions of the program are discussed.
Collapse
Affiliation(s)
- Terence R. Flotte
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Eric Daniels
- Social and Scientific Systems, Inc., Silver Spring, Maryland
| | - Janet Benson
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | | | - Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | | | - Julie Johnston
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan Sepelak
- Social and Scientific Systems, Inc., Silver Spring, Maryland
| | - Johannes C. M. van der Loo
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - James M. Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|