1
|
Liu C, Wan N, Wei L, Rong W, Zhu W, Xie M, Zhang Y, Liu Z, Jing Q, Lyu A. Therapeutic potential and protective role of GRK6 overexpression in pulmonary arterial hypertension. Vascul Pharmacol 2023; 153:107233. [PMID: 37742818 DOI: 10.1016/j.vph.2023.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Abnormal proliferation of pulmonary arterial smooth muscle cells (PASMCs) is a key mechanism in the development of pulmonary arterial hypertension (PAH). Signal transducer and activator of transcription 3 (STAT3) signalling plays a critical role in modulating PASMC proliferation, and G-protein-coupled receptor kinase 6 (GRK6) regulates the STAT3 pathway. However, the mechanism underlying the relationship between GRK6 and PAH remains unclear. In this study, we aimed to investigate the role of GRK6 in PAH and determine its potential as a therapeutic target. We utilised hypoxia- and SU5416-induced PAH mouse models and a monocrotaline-induced PAH rat model to analyse the involvement of GRK6. We conducted gain- and loss-of-function experiments using mouse PASMCs. Modulation of GRK6 expression was achieved via a lentiviral vector in vitro and an adeno-associated virus serotype 1 encoding GRK6 in vivo. GRK6 was significantly downregulated in the lung tissues of PAH mice and rats, predominantly in PASMCs. Knockout of GRK6 exacerbated PAH, while both therapeutic and prophylactic overexpression of GRK6 alleviated PAH, as evidenced by a reduction in right ventricular systolic pressure, right ventricular wall to left ventricular wall plus ventricular septum ratio, pulmonary vascular media thickness, and pulmonary vascular muscularisation. Mechanistically, GRK6 overexpression attenuated hypoxia-induced PASMC proliferation and STAT3 phosphorylation. Conversely, knockdown of GRK6 promoted hypoxia-induced proliferation, which was mitigated by a STAT3 inhibitor. Our findings highlight the potential protective and beneficial roles of GRK6 in PAH; we propose a lung-targeted GRK6 gene therapy utilizing adeno-associated virus serotype 1 as a potential treatment approach for patients with PAH.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Naifu Wan
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Lijiang Wei
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Wuwei Rong
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Wentong Zhu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Meifeng Xie
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Yanling Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zhihua Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.
| | - Ankang Lyu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China.
| |
Collapse
|
2
|
Endobronchial Gene Delivery for Pulmonary Hypertension in a Large Animal Model. Methods Mol Biol 2022; 2573:279-289. [PMID: 36040602 DOI: 10.1007/978-1-0716-2707-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pulmonary hypertension (PH) is a devastating disease with high morbidity and mortality. Despite significant progress in the pharmacotherapy, current treatments only ameliorate the symptoms and cannot heal PH. Gene therapy may target the roots of the disease and holds evident promise. The current bottleneck for lung gene therapy is the delivery method. The requirements for the delivery mode are efficiency, safety, and the ability to target the anatomical site of interest, while avoiding off-target effects. Aerosolized gene delivery has been used in several studies and proven to be an efficient mode of administration for lung gene therapy. In this chapter, we describe a protocol of endobronchial aerosolization for PH gene therapy in a large animal model. Testing of a gene therapy in large animals is essential before clinical testing, since the lung anatomy and (patho)physiology differ immensely between humans and rodents, where most of the proof-of-concept studies are tested. The gene delivery vector is being aerosolized in the peripheral bronchi using a sprayer inserted through a flexible bronchoscope. This delivery mode results in efficient lung uptake and less off-target distribution relative to other airway delivery methods.
Collapse
|
3
|
Bisserier M, Mathiyalagan P, Zhang S, Elmastour F, Dorfmüller P, Humbert M, David G, Tarzami S, Weber T, Perros F, Sassi Y, Sahoo S, Hadri L. Regulation of the Methylation and Expression Levels of the BMPR2 Gene by SIN3a as a Novel Therapeutic Mechanism in Pulmonary Arterial Hypertension. Circulation 2021; 144:52-73. [PMID: 34078089 PMCID: PMC8293289 DOI: 10.1161/circulationaha.120.047978] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 03/17/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Epigenetic mechanisms are critical in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have suggested that hypermethylation of the BMPR2 (bone morphogenetic protein receptor type 2) promoter is associated with BMPR2 downregulation and progression of PAH. Here, we investigated for the first time the role of SIN3a (switch-independent 3a), a transcriptional regulator, in the epigenetic mechanisms underlying hypermethylation of BMPR2 in the pathogenesis of PAH. METHODS We used lung samples from PAH patients and non-PAH controls, preclinical mouse and rat PAH models, and human pulmonary arterial smooth muscle cells. Expression of SIN3a was modulated using a lentiviral vector or a siRNA in vitro and a specific adeno-associated virus serotype 1 or a lentivirus encoding for human SIN3a in vivo. RESULTS SIN3a is a known transcriptional regulator; however, its role in cardiovascular diseases, especially PAH, is unknown. It is interesting that we detected a dysregulation of SIN3 expression in patients and in rodent models, which is strongly associated with decreased BMPR2 expression. SIN3a is known to regulate epigenetic changes. Therefore, we tested its role in the regulation of BMPR2 and found that BMPR2 is regulated by SIN3a. It is interesting that SIN3a overexpression inhibited human pulmonary arterial smooth muscle cells proliferation and upregulated BMPR2 expression by preventing the methylation of the BMPR2 promoter region. RNA-sequencing analysis suggested that SIN3a downregulated the expression of DNA and histone methyltransferases such as DNMT1 (DNA methyltransferase 1) and EZH2 (enhancer of zeste 2 polycomb repressive complex 2) while promoting the expression of the DNA demethylase TET1 (ten-eleven translocation methylcytosine dioxygenase 1). Mechanistically, SIN3a promoted BMPR2 expression by decreasing CTCF (CCCTC-binding factor) binding to the BMPR2 promoter. Last, we identified intratracheal delivery of adeno-associated virus serotype human SIN3a to be a beneficial therapeutic approach in PAH by attenuating pulmonary vascular and right ventricle remodeling, decreasing right ventricle systolic pressure and mean pulmonary arterial pressure, and restoring BMPR2 expression in rodent models of PAH. CONCLUSIONS All together, our study unveiled the protective and beneficial role of SIN3a in pulmonary hypertension. We also identified a novel and distinct molecular mechanism by which SIN3a regulates BMPR2 in human pulmonary arterial smooth muscle cells. Our study also identified lung-targeted SIN3a gene therapy using adeno-associated virus serotype 1 as a new promising therapeutic strategy for treating patients with PAH.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prabhu Mathiyalagan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Firas Elmastour
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Dorfmüller
- Hôpital Marie Lannelongue, Department of Pathology, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Sud, and Université Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
- Service de Pneumologie et Soins Intensifs Respiratoires and INSERM U999, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, Paris, France
| | - Gregory David
- New York University School of Medicine, New York, NY, USA
| | - Sima Tarzami
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington DC, USA
| | - Thomas Weber
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Watanabe S, Ishikawa K, Plataki M, Bikou O, Kohlbrenner E, Aguero J, Hadri L, Zarragoikoetxea I, Fish K, Leopold JA, Hajjar RJ. Safety and long-term efficacy of AAV1.SERCA2a using nebulizer delivery in a pig model of pulmonary hypertension. Pulm Circ 2018; 8:2045894018799738. [PMID: 30129881 PMCID: PMC6146327 DOI: 10.1177/2045894018799738] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
Nebulization delivery of adeno-associated virus serotype 1 encoding sarcoplasmic reticulum Ca2+-ATPase2a (AAV1.SERCA2a) gene was examined in a Yukatan miniature swine model of chronic pulmonary hypertension (n = 13). Nebulization of AAV1.SERCA2a resulted in homogenous distribution of vectors, lower pulmonary vascular resistance, and a trend towards better long-term survival compared to control animals.
Collapse
Affiliation(s)
- Shin Watanabe
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyotake Ishikawa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Plataki
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Weill Cornell Medicine, Pulmonary & Critical Care Medicine, New York, NY, USA
| | - Olympia Bikou
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erik Kohlbrenner
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaume Aguero
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iratxe Zarragoikoetxea
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Kenneth Fish
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jane A. Leopold
- Cardiovascular Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Roger J. Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Flotte TR, Daniels E, Benson J, Bevett-Rose JM, Cornetta K, Diggins M, Johnston J, Sepelak S, van der Loo JCM, Wilson JM, McDonald CL. The Gene Therapy Resource Program: A Decade of Dedication to Translational Research by the National Heart, Lung, and Blood Institute. HUM GENE THER CL DEV 2017; 28:178-186. [PMID: 29130351 PMCID: PMC5733658 DOI: 10.1089/humc.2017.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022] Open
Abstract
Over a 10-year period, the Gene Therapy Resource Program (GTRP) of the National Heart Lung and Blood Institute has provided a set of core services to investigators to facilitate the clinical translation of gene therapy. These services have included a preclinical (research-grade) vector production core; current Good Manufacturing Practice clinical-grade vector cores for recombinant adeno-associated virus and lentivirus vectors; a pharmacology and toxicology core; and a coordinating center to manage program logistics and to provide regulatory and financial support to early-phase clinical trials. In addition, the GTRP has utilized a Steering Committee and a Scientific Review Board to guide overall progress and effectiveness and to evaluate individual proposals. These resources have been deployed to assist 82 investigators with 172 approved service proposals. These efforts have assisted in clinical trial implementation across a wide range of genetic, cardiac, pulmonary, and blood diseases. Program outcomes and potential future directions of the program are discussed.
Collapse
Affiliation(s)
- Terence R. Flotte
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Eric Daniels
- Social and Scientific Systems, Inc., Silver Spring, Maryland
| | - Janet Benson
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | | | - Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | | | - Julie Johnston
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan Sepelak
- Social and Scientific Systems, Inc., Silver Spring, Maryland
| | - Johannes C. M. van der Loo
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - James M. Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
6
|
Jin R, Shen M, Yu L, Wang X, Lin X. Adipose-Derived Stem Cells Suppress Inflammation Induced by IL-1β through Down-Regulation of P2X7R Mediated by miR-373 in Chondrocytes of Osteoarthritis. Mol Cells 2017; 40:222-229. [PMID: 28343378 PMCID: PMC5386960 DOI: 10.14348/molcells.2017.2314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/17/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) were previously considered to have an anti-inflammatory effect, and Interleukin-1β (IL-1β) was found to be a pro-inflammatory factor in chondrocytes, but the mechanism underlying ADSCs and IL-1β is unclear. In this study, we investigate whether P2X7 receptor (P2X7R) signalling, regulated by microRNA 373 (miR-373), was involved in the ADSCs and IL-1β mediated inflammation in osteoarthritis (OA). Chondrocytes were collected from 20 OA patients and 20 control participants, and ADSCs were collected from patients who had undergone abdominal surgery. The typical surface molecules of ASDCs were detected by flow cytometry. The level of nitric oxide (NO) was determined by Griess reagent. Concentrations of prostaglandin E2 (PGE2), interleukin 6 (IL-6), matrix metallopeptidase 3 (MMP-3) were detected by enzyme-linked immunosorbent assay (ELISA). The expressions of IL-6, MMP-3, miR-373 and P2X7R were determined by real-time polymerase chain reaction (PCR), and Western blot was used to detect the protein expression of P2X7R. The typical potential characters of ADSCs were verified. In chondrocytes or OA tissues, the miR-373 expression level was decreased, but the P2X7R expression was increased. IL-1β stimulation increased the level of inflammatory factors in OA chondrocytes, and ADSCs co-cultured with IL-1β-stimulated chondrocytes decreased the inflammation. OA chondrocytes transfected with the miR-373 inhibitor increased the inflammation level. The miR-373 mimic suppressed the inflammation by targeting P2X7R and regulated its expression, while its effect was reversed by overexpression of P2X7R. IL-1β induced inflammation in OA chondrocytes, while ADSCs seemed to inhibit the expression of P2X7R that was regulated by miR-373 and involved in the anti-inflammatory process in OA.
Collapse
Affiliation(s)
- Rilong Jin
- Department of Orthopedics Surgery, The First Affiliated Hospital, College of Medical Zhejiang University, Hangzhou, 310003
China
| | - Miaoda Shen
- Department of Orthopedics Surgery, The First Affiliated Hospital, College of Medical Zhejiang University, Hangzhou, 310003
China
| | - Liedao Yu
- Department of Orthopedics Surgery, The First Affiliated Hospital, College of Medical Zhejiang University, Hangzhou, 310003
China
| | - Xuanwei Wang
- Department of Orthopedics Surgery, The First Affiliated Hospital, College of Medical Zhejiang University, Hangzhou, 310003
China
| | - Xiangjin Lin
- Department of Orthopedics Surgery, The First Affiliated Hospital, College of Medical Zhejiang University, Hangzhou, 310003
China
| |
Collapse
|