1
|
Hasegawa K, Raudales JLM, I T, Yoshida T, Honma R, Iwatake M, Tran SD, Seki M, Asahina I, Sumita Y. Effective-mononuclear cell (E-MNC) therapy alleviates salivary gland damage by suppressing lymphocyte infiltration in Sjögren-like disease. Front Bioeng Biotechnol 2023; 11:1144624. [PMID: 37168614 PMCID: PMC10164970 DOI: 10.3389/fbioe.2023.1144624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Sjögren syndrome (SS) is an autoimmune disease characterized by salivary gland (SG) destruction leading to loss of secretory function. A hallmark of the disease is the presence of focal lymphocyte infiltration in SGs, which is predominantly composed of T cells. Currently, there are no effective therapies for SS. Recently, we demonstrated that a newly developed therapy using effective-mononuclear cells (E-MNCs) improved the function of radiation-injured SGs due to anti-inflammatory and regenerative effects. In this study, we investigated whether E-MNCs could ameliorate disease development in non-obese diabetic (NOD) mice as a model for primary SS. Methods: E-MNCs were obtained from peripheral blood mononuclear cells (PBMNCs) cultured for 7 days in serum-free medium supplemented with five specific recombinant proteins (5G culture). The anti-inflammatory characteristics of E-MNCs were then analyzed using a co-culture system with CD3/CD28-stimulated PBMNCs. To evaluate the therapeutic efficacy of E-MNCs against SS onset, E-MNCs were transplanted into SGs of NOD mice. Subsequently, saliva secretion, histological, and gene expression analyses of harvested SG were performed to investigate if E-MNCs therapy delays disease development. Results: First, we characterized that both human and mouse E-MNCs exhibited induction of CD11b/CD206-positive cells (M2 macrophages) and that human E-MNCs could inhibit inflammatory gene expressions in CD3/CD28- stimulated PBMNCs. Further analyses revealed that Msr1-and galectin3-positive macrophages (immunomodulatory M2c phenotype) were specifically induced in E-MNCs of both NOD and MHC class I-matched mice. Transplanted E-MNCs induced M2 macrophages and reduced the expression of T cell-derived chemokine-related and inflammatory genes in SG tissue of NOD mice at SS-onset. Then, E-MNCs suppressed the infiltration of CD4-positive T cells and facilitated the maintenance of saliva secretion for up to 12 weeks after E-MNC administration. Discussion: Thus, the immunomodulatory actions of E-MNCs could be part of a therapeutic strategy targeting the early stage of primary SS.
Collapse
Affiliation(s)
- Kayo Hasegawa
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jorge Luis Montenegro Raudales
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi I
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takako Yoshida
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryo Honma
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mayumi Iwatake
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Simon D. Tran
- Laboratory of Craniofacial Tissue Engineering and Stem Cells, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | | | - Izumi Asahina
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Depatment of Oral and Maxillofacial Surgery, Juntendo University Hospital, Tokyo, Japan
| | - Yoshinori Sumita
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- *Correspondence: Yoshinori Sumita,
| |
Collapse
|
2
|
Guo Y, Ji W, Lu Y, Wang Y. Triptolide reduces salivary gland damage in a non-obese diabetic mice model of Sjögren's syndrome via JAK/STAT and NF-κB signaling pathways. J Clin Biochem Nutr 2021; 68:131-138. [PMID: 33879964 PMCID: PMC8046007 DOI: 10.3164/jcbn.20-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023] Open
Abstract
Triptolide (TP) has anti-inflammatory and immunosuppressive effects. However, the effect of triptolide on Sjögren's syndrome (SS) is rarely reported. In this paper, we studied the effects of triptolide on non-obese diabetes mice model of SS. In this study, salivary flow rate was measured every two weeks, and autoantibodies levels in the serum were detected. Salivary gland index and spleen index were detected, pathological changes of salivary gland were detected by hematoxylin-eosin staining, inflammatory factors were detected by enzyme linked immunosorbent assay, lymphocytes were detected by flow cytometry, proliferation of T cells and B cells were detected, and related proteins were detected by Western blot. Triptolide increased salivary flow rate and salivary gland index, and decreased spleen gland index. Moreover, triptolide reduced the infiltration of lymphocytes to salivary glands, decreased the level of autoantibodies in serum, and reduced the inflammatory factors in salivary glands and IFN-γ induced salivary gland epithelial cells. Further, triptolide inhibited activator of JAK/STAT pathway and NF-κB pathway. In conclusion, triptolide could inhibit the infiltration of lymphocytes and the expression of inflammatory factors through JAK/STAT pathway and NF-κB pathway. Thus, triptolide may be used as a potential drug to treat SS.
Collapse
Affiliation(s)
- Yunke Guo
- Department of Rheumatism, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing 210000, China
| | - Wei Ji
- Department of Rheumatism, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing 210000, China
| | - Yueyang Lu
- Integration of traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai District, Nanjing 210023, China
| | - Yue Wang
- Department of Rheumatism, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing 210000, China
| |
Collapse
|
3
|
Abughanam G, Elkashty OA, Liu Y, Bakkar MO, Tran SD. Mesenchymal Stem Cells Extract (MSCsE)-Based Therapy Alleviates Xerostomia and Keratoconjunctivitis Sicca in Sjogren's Syndrome-Like Disease. Int J Mol Sci 2019; 20:ijms20194750. [PMID: 31557796 PMCID: PMC6801785 DOI: 10.3390/ijms20194750] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022] Open
Abstract
Sjogren’s syndrome (SS) is an autoimmune disease that manifests primarily in salivary and lacrimal glands leading to dry mouth and eyes. Unfortunately, there is no cure for SS due to its complex etiopathogenesis. Mesenchymal stem cells (MSCs) were successfully tested for SS, but some risks and limitations remained for their clinical use. This study combined cell- and biologic-based therapies by utilizing the MSCs extract (MSCsE) to treat SS-like disease in NOD mice. We found that MSCsE and MSCs therapies were successful and comparable in preserving salivary and lacrimal glands function in NOD mice when compared to control group. Cells positive for AQP5, AQP4, α-SMA, CK5, and c-Kit were preserved. Gene expression of AQP5, EGF, FGF2, BMP7, LYZ1 and IL-10 were upregulated, and downregulated for TNF-α, TGF-β1, MMP2, CASP3, and IL-1β. The proliferation rate of the glands and serum levels of EGF were also higher. Cornea integrity and epithelial thickness were maintained due to tear flow rate preservation. Peripheral tolerance was re-established, as indicated by lower lymphocytic infiltration and anti-SS-A antibodies, less BAFF secretion, higher serum IL-10 levels and FoxP3+ Treg cells, and selective inhibition of B220+ B cells. These promising results opened new venues for a safer and more convenient combined biologic- and cell-based therapy.
Collapse
Affiliation(s)
- Ghada Abughanam
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| | - Osama A Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| | - Younan Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| | - Mohammed O Bakkar
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| |
Collapse
|
4
|
Lu M, Guo S, Hong F, Zhang Y, Yuan L, Ma C, Ma J. Pax2 is essential for proliferation and osteogenic differentiation of mouse mesenchymal stem cells via Runx2. Exp Cell Res 2018; 371:342-352. [DOI: 10.1016/j.yexcr.2018.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023]
|
5
|
Mesenchymal Stem Cells in Primary Sjögren's Syndrome: Prospective and Challenges. Stem Cells Int 2018; 2018:4357865. [PMID: 30305818 PMCID: PMC6165618 DOI: 10.1155/2018/4357865] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/20/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic systemic inflammatory autoimmune disease characterized by lymphocytic infiltrates in exocrine glands. Current approaches do not control harmful autoimmune attacks or prevent irreversible damage and have considerable side effects. Mesenchymal stem cells (MSCs) have been effective in the treatment of several autoimmune diseases. The objective of this review is to illustrate the potential therapeutic role of MSCs in pSS. We summarize the recent advances in what is known about their immunomodulatory function and therapeutic applications in pSS. MSC transfusion can suppress autoimmunity and restore salivary gland secretory function in mouse models and patients with pSS by inducing regulatory T cells, suppressing Th1, Th17, and T follicular helper cell responses. In addition, MSCs can differentiate into salivary epithelial cells, presenting an option as a suitable alternative treatment. We also discuss current bioengineering methods which improve functions of MSCs for pSS. However, there remain many challenges to overcome before their wide clinical application.
Collapse
|