1
|
Levy AD, Xiao X, Shaw JE, Sudarsana Devi SP, Katrancha SM, Bennett AM, Greer CA, Howe JR, Machida K, Koleske AJ. Noonan Syndrome-Associated SHP2 Dephosphorylates GluN2B to Regulate NMDA Receptor Function. Cell Rep 2018; 24:1523-1535. [PMID: 30089263 PMCID: PMC6234505 DOI: 10.1016/j.celrep.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/21/2018] [Accepted: 07/01/2018] [Indexed: 11/23/2022] Open
Abstract
Hyperactivating mutations in the non-receptor tyrosine phosphatase SHP2 cause Noonan syndrome (NS). NS is associated with cognitive deficits, but how hyperactivation of SHP2 in NS changes neuron function is not well understood. We find that mice bearing an NS-associated SHP2 allele (NS mice) have selectively impaired Schaffer collateral-CA1 NMDA (N-methyl-D-aspartate) receptor (NMDAR)-mediated neurotransmission and that residual NMDAR-mediated currents decay faster in NS mice because of reduced contribution of GluN1:GluN2B diheteromers. Consistent with altered GluN2B function, we identify GluN2B Y1252 as an NS-associated SHP2 substrate both in vitro and in vivo. Mutation of Y1252 does not alter recombinant GluN1:GluN2B receptor kinetics. Instead, phospho-Y1252 binds the actin-regulatory adaptor protein Nck2, and this interaction is required for proper NMDAR function. These results establish SHP2 and Nck2 as NMDAR regulatory proteins and strongly suggest that NMDAR dysfunction contributes to NS cognitive deficits.
Collapse
Affiliation(s)
- Aaron D Levy
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Xiao Xiao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Juliana E Shaw
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Sara Marie Katrancha
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University, New Haven, CT 06520, USA
| | - Charles A Greer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - James R Howe
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Anthony J Koleske
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
2
|
Miller MB, Yan Y, Machida K, Kiraly DD, Levy AD, Wu YI, Lam TT, Abbott T, Koleske AJ, Eipper BA, Mains RE. Brain Region and Isoform-Specific Phosphorylation Alters Kalirin SH2 Domain Interaction Sites and Calpain Sensitivity. ACS Chem Neurosci 2017; 8:1554-1569. [PMID: 28418645 DOI: 10.1021/acschemneuro.7b00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kalirin7 (Kal7), a postsynaptic Rho GDP/GTP exchange factor (RhoGEF), plays a crucial role in long-term potentiation and in the effects of cocaine on behavior and spine morphology. The KALRN gene has been linked to schizophrenia and other disorders of synaptic function. Mass spectrometry was used to quantify phosphorylation at 26 sites in Kal7 from individual adult rat nucleus accumbens and prefrontal cortex before and after exposure to acute or chronic cocaine. Region- and isoform-specific phosphorylation was observed along with region-specific effects of cocaine on Kal7 phosphorylation. Evaluation of the functional significance of multisite phosphorylation in a complex protein like Kalirin is difficult. With the identification of five tyrosine phosphorylation (pY) sites, a panel of 71 SH2 domains was screened, identifying subsets that interacted with multiple pY sites in Kal7. In addition to this type of reversible interaction, endoproteolytic cleavage by calpain plays an essential role in long-term potentiation. Calpain cleaved Kal7 at two sites, separating the N-terminal domain, which affects spine length, and the PDZ binding motif from the GEF domain. Mutations preventing phosphorylation did not affect calpain sensitivity or GEF activity; phosphomimetic mutations at specific sites altered protein stability, increased calpain sensitivity, and reduced GEF activity.
Collapse
Affiliation(s)
| | | | | | - Drew D. Kiraly
- Department
of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | | | | | | | | | | | | | | |
Collapse
|