1
|
Lu J, Veler A, Simonetti B, Raj T, Chou PH, Cross SJ, Phillips AM, Ruan X, Huynh L, Dowsey AW, Ye D, Murphy RF, Verkade P, Cullen PJ, Wülfing C. Five Inhibitory Receptors Display Distinct Vesicular Distributions in Murine T Cells. Cells 2023; 12:2558. [PMID: 37947636 PMCID: PMC10649679 DOI: 10.3390/cells12212558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to a persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3, and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct, with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.
Collapse
Affiliation(s)
- Jiahe Lu
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.L.); (A.V.); (T.R.); (P.H.C.); (L.H.)
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China;
| | - Alisa Veler
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.L.); (A.V.); (T.R.); (P.H.C.); (L.H.)
| | - Boris Simonetti
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (B.S.); (P.V.); (P.J.C.)
| | - Timsse Raj
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.L.); (A.V.); (T.R.); (P.H.C.); (L.H.)
| | - Po Han Chou
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.L.); (A.V.); (T.R.); (P.H.C.); (L.H.)
| | - Stephen J. Cross
- Wolfson Bioimaging Facility, University of Bristol, Bristol BS8 1TD, UK;
| | - Alexander M. Phillips
- Department of Electrical Engineering & Electronics and Computational Biology Facility, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Xiongtao Ruan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (X.R.); (R.F.M.)
| | - Lan Huynh
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.L.); (A.V.); (T.R.); (P.H.C.); (L.H.)
| | - Andrew W. Dowsey
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK;
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China;
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Robert F. Murphy
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (X.R.); (R.F.M.)
- Department of Biological Sciences, Biomedical Engineering and Machine Learning, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (B.S.); (P.V.); (P.J.C.)
| | - Peter J. Cullen
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (B.S.); (P.V.); (P.J.C.)
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.L.); (A.V.); (T.R.); (P.H.C.); (L.H.)
| |
Collapse
|
2
|
Lu J, Veler A, Simonetti B, Raj T, Chou PH, Cross SJ, Phillips AM, Ruan X, Huynh L, Dowsey AW, Ye D, Murphy RF, Verkade P, Cullen PJ, Wülfing C. Five inhibitory receptors display distinct vesicular distributions in T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550019. [PMID: 37503045 PMCID: PMC10370166 DOI: 10.1101/2023.07.21.550019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3 and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and a biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.
Collapse
Affiliation(s)
- Jiahe Lu
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P.R. China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, P.R. China
| | - Alisa Veler
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Boris Simonetti
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Timsse Raj
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Po Han Chou
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Stephen J. Cross
- Wolfson BioImaging Facility, University of Bristol, Bristol, BS8 1TD, UK
| | - Alexander M. Phillips
- Department of Electrical Engineering & Electronics and Computational Biology Facility, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Xiongtao Ruan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Lan Huynh
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Andrew W. Dowsey
- Bristol Veterinary School, University of Bristol, Bristol, BS40 5DU, UK
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P.R. China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, P.R. China
| | - Robert F. Murphy
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Departments of Biological Sciences, Biomedical Engineering and Machine Learning, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Peter J. Cullen
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
3
|
Li Y, Tunbridge HM, Britton GJ, Hill EV, Sinai P, Cirillo S, Thompson C, Fallah-Arani F, Dovedi SJ, Wraith DC, Wülfing C. A LAT-Based Signaling Complex in the Immunological Synapse as Determined with Live Cell Imaging Is Less Stable in T Cells with Regulatory Capability. Cells 2021; 10:418. [PMID: 33671236 PMCID: PMC7921939 DOI: 10.3390/cells10020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/03/2022] Open
Abstract
Peripheral immune regulation is critical for the maintenance of self-tolerance. Here we have investigated signaling processes that distinguish T cells with regulatory capability from effector T cells. The murine Tg4 T cell receptor recognizes a peptide derived from the self-antigen myelin basic protein. T cells from Tg4 T cell receptor transgenic mice can be used to generate effector T cells and three types of T cells with regulatory capability, inducible regulatory T cells, T cells tolerized by repeated in vivo antigenic peptide exposure or T cells treated with the tolerogenic drug UCB9608 (a phosphatidylinositol 4 kinase IIIβ inhibitor). We comparatively studied signaling in all of these T cells by activating them with the same antigen presenting cells presenting the same myelin basic protein peptide. Supramolecular signaling structures, as efficiently detected by large-scale live cell imaging, are critical mediators of T cell activation. The formation of a supramolecular signaling complex anchored by the adaptor protein linker for activation of T cells (LAT) was consistently terminated more rapidly in Tg4 T cells with regulatory capability. Such termination could be partially reversed by blocking the inhibitory receptors CTLA-4 and PD-1. Our work suggests that attenuation of proximal signaling may favor regulatory over effector function in T cells.
Collapse
Affiliation(s)
- Yikui Li
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Helen M Tunbridge
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Graham J Britton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elaine V Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Parisa Sinai
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Silvia Cirillo
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | - Simon J Dovedi
- R&D Oncology, AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - David C Wraith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
4
|
Tan SL, Alibhai D, Cross SJ, Thompson H, Wülfing C. Super-resolution Imaging of the T cell Central Supramolecular Signaling Cluster Using Stimulated Emission Depletion Microscopy. Bio Protoc 2020; 10:e3806. [PMID: 33659460 PMCID: PMC7842649 DOI: 10.21769/bioprotoc.3806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/23/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Supramolecular signaling assemblies are of interest for their unique signaling properties. A µm scale signaling assembly, the central supramolecular signaling cluster (cSMAC), forms at the center interface of T cells activated by antigen presenting cells (APC). The adaptor protein linker for activation of T cells (LAT) is a key cSMAC component. The cSMAC has widely been studied using total internal reflection fluorescence microscopy of CD4+ T cells activated by planar APC substitutes. Here we provide a protocol to image the cSMAC in its cellular context at the interface between a T cell and an APC. Super resolution stimulated emission depletion microscopy (STED) was utilized to determine the localization of LAT, that of its active, phosphorylated form and its entire pool. Agonist peptide-loaded APCs were incubated with TCR transgenic CD4+ T cells for 4.5 min before fixation and antibody staining. Fixed cell couples were imaged using a 100x 1.4 NA objective on a Leica SP8 AOBS confocal laser scanning microscope. LAT clustered in multiple supramolecular complexes and their number and size distributions were determined. Using this protocol, cSMAC properties in its cellular context at the interface between a T cell and an APC could be quantified.
Collapse
Affiliation(s)
- Sin Lih Tan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom,*For correspondence: ;
| | - Dominic Alibhai
- Wolfson BioImaging Facility, University of Bristol, Bristol, United Kingdom
| | - Stephen J. Cross
- Wolfson BioImaging Facility, University of Bristol, Bristol, United Kingdom
| | - Harry Thompson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom,*For correspondence: ;
| |
Collapse
|
5
|
Ambler R, Edmunds GL, Tan SL, Cirillo S, Pernes JI, Ruan X, Huete-Carrasco J, Wong CCW, Lu J, Ward J, Toti G, Hedges AJ, Dovedi SJ, Murphy RF, Morgan DJ, Wülfing C. PD-1 suppresses the maintenance of cell couples between cytotoxic T cells and target tumor cells within the tumor. Sci Signal 2020; 13:13/649/eaau4518. [PMID: 32934075 DOI: 10.1126/scisignal.aau4518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The killing of tumor cells by CD8+ T cells is suppressed by the tumor microenvironment, and increased expression of inhibitory receptors, including programmed cell death protein-1 (PD-1), is associated with tumor-mediated suppression of T cells. To find cellular defects triggered by tumor exposure and associated PD-1 signaling, we established an ex vivo imaging approach to investigate the response of antigen-specific, activated effector CD8+ tumor-infiltrating lymphocytes (TILs) after interaction with target tumor cells. Although TIL-tumor cell couples readily formed, couple stability deteriorated within minutes. This was associated with impaired F-actin clearing from the center of the cellular interface, reduced Ca2+ signaling, increased TIL locomotion, and impaired tumor cell killing. The interaction of CD8+ T lymphocytes with tumor cell spheroids in vitro induced a similar phenotype, supporting a critical role of direct T cell-tumor cell contact. Diminished engagement of PD-1 within the tumor, but not acute ex vivo blockade, partially restored cell couple maintenance and killing. PD-1 thus contributes to the suppression of TIL function by inducing a state of impaired subcellular organization.
Collapse
Affiliation(s)
- Rachel Ambler
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Grace L Edmunds
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Sin Lih Tan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Silvia Cirillo
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Jane I Pernes
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Xiongtao Ruan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jorge Huete-Carrasco
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Carissa C W Wong
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Jiahe Lu
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Juma Ward
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Giulia Toti
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Alan J Hedges
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Simon J Dovedi
- R&D Oncology, AstraZeneca, Granta Park, Cambridge CB21 6GH, UK
| | - Robert F Murphy
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Departments of Biological Sciences, Biomedical Engineering and Machine Learning, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Freiburg Institute for Advanced Studies and Faculty of Biology, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | - David J Morgan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
6
|
Clark DJ, McMillan LE, Tan SL, Bellomo G, Massoue C, Thompson H, Mykhaylechko L, Alibhai D, Ruan X, Singleton KL, Du M, Hedges A, Schwartzberg PL, Verkade P, Murphy RF, Wülfing C. Transient protein accumulation at the center of the T cell antigen-presenting cell interface drives efficient IL-2 secretion. eLife 2019; 8:e45789. [PMID: 31663508 PMCID: PMC6821493 DOI: 10.7554/elife.45789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023] Open
Abstract
Supramolecular signaling assemblies are of interest for their unique signaling properties. A µm scale signaling assembly, the central supramolecular signaling cluster (cSMAC), forms at the center of the interface of T cells activated by antigen-presenting cells. We have determined that it is composed of multiple complexes of a supramolecular volume of up to 0.5 µm3 and associated with extensive membrane undulations. To determine cSMAC function, we have systematically manipulated the localization of three adaptor proteins, LAT, SLP-76, and Grb2. cSMAC localization varied between the adaptors and was diminished upon blockade of the costimulatory receptor CD28 and deficiency of the signal amplifying kinase Itk. Reconstitution of cSMAC localization restored IL-2 secretion which is a key T cell effector function as dependent on reconstitution dynamics. Our data suggest that the cSMAC enhances early signaling by facilitating signaling interactions and attenuates signaling thereafter through sequestration of a more limited set of signaling intermediates.
Collapse
Affiliation(s)
- Danielle J Clark
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Laura E McMillan
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Sin Lih Tan
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Gaia Bellomo
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Clementine Massoue
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Harry Thompson
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Lidiya Mykhaylechko
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Dominic Alibhai
- School of BiochemistryUniversity of BristolBristolUnited Kingdom
| | - Xiongtao Ruan
- Computational Biology Department, School of Computer ScienceCarnegie Mellon UniversityPittsburghUnited States
| | - Kentner L Singleton
- Department of ImmunologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Minna Du
- Department of ImmunologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Alan Hedges
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Pamela L Schwartzberg
- Genetic Disease Research BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Paul Verkade
- School of BiochemistryUniversity of BristolBristolUnited Kingdom
| | - Robert F Murphy
- Computational Biology Department, School of Computer ScienceCarnegie Mellon UniversityPittsburghUnited States
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghUnited States
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUnited States
- Department of Machine LearningCarnegie Mellon UniversityPittsburghUnited States
- Freiburg Institute for Advanced StudiesAlbert Ludwig University of FreiburgFreiburgGermany
- Faculty of BiologyAlbert Ludwig University of FreiburgFreiburgGermany
| | - Christoph Wülfing
- School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
- Department of ImmunologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|