1
|
Li J, Zhan X. Mass spectrometry analysis of phosphotyrosine-containing proteins. MASS SPECTROMETRY REVIEWS 2024; 43:857-887. [PMID: 36789499 DOI: 10.1002/mas.21836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Tyrosine phosphorylation is a crucial posttranslational modification that is involved in various aspects of cell biology and often has functions in cancers. It is necessary not only to identify the specific phosphorylation sites but also to quantify their phosphorylation levels under specific pathophysiological conditions. Because of its high sensitivity and accuracy, mass spectrometry (MS) has been widely used to identify endogenous and synthetic phosphotyrosine proteins/peptides across a range of biological systems. However, phosphotyrosine-containing proteins occur in extremely low abundance and they degrade easily, severely challenging the application of MS. This review highlights the advances in both quantitative analysis procedures and enrichment approaches to tyrosine phosphorylation before MS analysis and reviews the differences among phosphorylation, sulfation, and nitration of tyrosine residues in proteins. In-depth insights into tyrosine phosphorylation in a wide variety of biological systems will offer a deep understanding of how signal transduction regulates cellular physiology and the development of tyrosine phosphorylation-related drugs as cancer therapeutics.
Collapse
Affiliation(s)
- Jiajia Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, Jinan, People's Republic of China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, Hunan, People's Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, Jinan, People's Republic of China
| |
Collapse
|
2
|
Li J, Zhan X. Mass spectrometry-based proteomics analyses of post-translational modifications and proteoforms in human pituitary adenomas. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140584. [PMID: 33321259 DOI: 10.1016/j.bbapap.2020.140584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Pituitary adenoma (PA) is a common intracranial neoplasm, which affects the hypothalamus-pituitary-target organ axis systems, and is hazardous to human health. Post-translational modifications (PTMs), including phosphorylation, ubiquitination, nitration, and sumoylation, are vitally important in the PA pathogenesis. The large-scale analysis of PTMs could provide a global view of molecular mechanisms for PA. Proteoforms, which are used to define various protein structural and functional forms originated from the same gene, are the future direction of proteomics research. The global studies of different proteoforms and PTMs of hypophyseal hormones such as growth hormone (GH) and prolactin (PRL) and the proportion change of different GH proteoforms or PRL proteoforms in human pituitary tissue could provide new insights into the clinical value of pituitary hormones in PAs. Multiple quantitative proteomics methods, including mass spectrometry (MS)-based label-free and stable isotope-labeled strategies in combination with different PTM-peptide enrichment methods such as TiO2 enrichment of tryptic phosphopeptides and antibody enrichment of other PTM-peptides increase the feasibility for researchers to study PA proteomes. This article reviews the research status of PTMs and proteoforms in PAs, including the enrichment method, technical limitation, quantitative proteomics strategies, and the future perspectives, to achieve the goals of in-depth understanding its molecular pathogenesis, and discovering effective biomarkers and clinical therapeutic targets for predictive, preventive, and personalized treatment of PA patients.
Collapse
Affiliation(s)
- Jiajia Li
- University Creative Research Initiatives Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117, P. R. China; Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 P. R. China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Xianquan Zhan
- University Creative Research Initiatives Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117, P. R. China; Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 P. R. China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China.
| |
Collapse
|
3
|
Ding F, Zhao Y, Liu H, Zhang W. Core–shell magnetic microporous covalent organic framework with functionalized Ti(iv) for selective enrichment of phosphopeptides. Analyst 2020; 145:4341-4351. [DOI: 10.1039/d0an00038h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We fabricated a core-shell magnetic Ti4+-functionalized covalent organic framework composite to selectively capture phosphopeptides in biosamples. This method is applicable to achieve rapid, selective and efficient phosphopeptide analysis.
Collapse
Affiliation(s)
- Fengjuan Ding
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People’ s Republic of China
| | - Yameng Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People’ s Republic of China
| | - Haiyan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People’ s Republic of China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People’ s Republic of China
| |
Collapse
|
4
|
Schelletter L, Albaum S, Walter S, Noll T, Hoffrogge R. Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS. Appl Microbiol Biotechnol 2019; 103:8127-8143. [DOI: 10.1007/s00253-019-10020-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
|