1
|
Kolitsida P, Nolic V, Zhou J, Stumpe M, Niemi NM, Dengjel J, Abeliovich H. The pyruvate dehydrogenase complex regulates mitophagic trafficking and protein phosphorylation. Life Sci Alliance 2023; 6:e202302149. [PMID: 37442609 PMCID: PMC10345312 DOI: 10.26508/lsa.202302149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The mitophagic degradation of mitochondrial matrix proteins in Saccharomyces cerevisiae was previously shown to be selective, reflecting a pre-engulfment sorting step within the mitochondrial network. This selectivity is regulated through phosphorylation of mitochondrial matrix proteins by the matrix kinases Pkp1 and Pkp2, which in turn appear to be regulated by the phosphatase Aup1/Ptc6. However, these same proteins also regulate the phosphorylation status and catalytic activity of the yeast pyruvate dehydrogenase complex, which is critical for mitochondrial metabolism. To understand the relationship between these two functions, we evaluated the role of the pyruvate dehydrogenase complex in mitophagic selectivity. Surprisingly, we identified a novel function of the complex in regulating mitophagic selectivity, which is independent of its enzymatic activity. Our data support a model in which the pyruvate dehydrogenase complex directly regulates the activity of its associated kinases and phosphatases. This regulatory interaction then determines the phosphorylation state of mitochondrial matrix proteins and their mitophagic fates.
Collapse
Affiliation(s)
- Panagiota Kolitsida
- Department of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, Israel
| | - Vladimir Nolic
- Department of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, Israel
| | - Jianwen Zhou
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Natalie M Niemi
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, MO, USA
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Hagai Abeliovich
- Department of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Brejová B, Vozáriková V, Agarský I, Derková H, Fedor M, Harmanová D, Kiss L, Korman A, Pašen M, Brázdovič F, Vinař T, Nosek J, Tomáška Ľ. y-mtPTM: Yeast mitochondrial posttranslational modification database. Genetics 2023; 224:iyad087. [PMID: 37183478 DOI: 10.1093/genetics/iyad087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023] Open
Abstract
One powerful strategy of how to increase the complexity of cellular proteomes is through posttranslational modifications (PTMs) of proteins. Currently, there are ∼400 types of PTMs, the different combinations of which yield a large variety of protein isoforms with distinct biochemical properties. Although mitochondrial proteins undergoing PTMs were identified nearly 6 decades ago, studies on the roles and extent of PTMs on mitochondrial functions lagged behind the other cellular compartments. The application of mass spectrometry for the characterization of the mitochondrial proteome as well as for the detection of various PTMs resulted in the identification of thousands of amino acid positions that can be modified by different chemical groups. However, the data on mitochondrial PTMs are scattered in several data sets, and the available databases do not contain a complete list of modified residues. To integrate information on PTMs of the mitochondrial proteome of the yeast Saccharomyces cerevisiae, we built the yeast mitochondrial posttranslational modification (y-mtPTM) database (http://compbio.fmph.uniba.sk/y-mtptm/). It lists nearly 20,000 positions on mitochondrial proteins affected by ∼20 various PTMs, with phosphorylated, succinylated, acetylated, and ubiquitylated sites being the most abundant. A simple search of a protein of interest reveals the modified amino acid residues, their position within the primary sequence as well as on its 3D structure, and links to the source reference(s). The database will serve yeast mitochondrial researchers as a comprehensive platform to investigate the functional significance of the PTMs of mitochondrial proteins.
Collapse
Affiliation(s)
- Bronislava Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava 842 48, Slovakia
| | - Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| | - Ivan Agarský
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava 842 48, Slovakia
| | - Hana Derková
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava 842 48, Slovakia
| | - Matej Fedor
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava 842 48, Slovakia
| | - Dominika Harmanová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava 842 48, Slovakia
| | - Lukáš Kiss
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava 842 48, Slovakia
| | - Andrej Korman
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava 842 48, Slovakia
| | - Martin Pašen
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava 842 48, Slovakia
| | - Filip Brázdovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava 842 48, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| |
Collapse
|
3
|
Thongboonkerd V, Chaiyarit S. Gel-Based and Gel-Free Phosphoproteomics to Measure and Characterize Mitochondrial Phosphoproteins. Curr Protoc 2022; 2:e390. [PMID: 35275445 DOI: 10.1002/cpz1.390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitochondrion is a key intracellular organelle regulating metabolic processes, oxidative stress, energy production, calcium homeostasis, and cell survival. Protein phosphorylation plays an important role in regulating mitochondrial functions and cellular signaling pathways. Dysregulation of protein phosphorylation status can cause protein malfunction and abnormal signal transduction, leading to organ dysfunction and disease. Investigating the mitochondrial phosphoproteins is therefore crucial to better understand the molecular and pathogenic mechanisms of many metabolic disorders. Conventional analyses of phosphoproteins, for instance, via western blotting, can be done only for proteins for which specific antibodies to their phosphorylated forms are available. Moreover, such an approach is not suitable for large-scale study of phosphoproteins. Currently, proteomics represents an important tool for large-scale analysis of proteins and their post-translational modifications, including phosphorylation. Here, we provide step-by-step protocols for the proteomics analysis of mitochondrial phosphoproteins (the phosphoproteome), using renal tubular cells as an example. These protocols include methods to effectively isolate mitochondria and to validate the efficacy of mitochondrial enrichment as well as its purity. We also provide detailed protocols for performing both gel-based and gel-free phosphoproteome analyses. The gel-based analysis involves two-dimensional gel electrophoresis and phosphoprotein-specific staining, followed by protein identification via mass spectrometry, whereas the gel-free approach is based on in-solution mass spectrometric identification of specific phosphorylation sites and residues. In all, these approaches allow large-scale analyses of mitochondrial phosphoproteins that can be applied to other cells and tissues of interest. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Mitochondrial isolation/purification from renal tubular cells Support Protocol: Validation of enrichment efficacy and purity of mitochondrial isolation Basic Protocol 2: Gel-based phosphoproteome analysis Basic Protocol 3: Gel-free phosphoproteome analysis.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
HSP60 Regulates Lipid Metabolism in Human Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6610529. [PMID: 34557266 PMCID: PMC8452972 DOI: 10.1155/2021/6610529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Accumulating evidence demonstrates that cancer is an oxidative stress-related disease, and oxidative stress is closely linked with heat shock proteins (HSPs). Lipid oxidative stress is derived from lipid metabolism dysregulation that is closely associated with the development and progression of malignancies. This study sought to investigate regulatory roles of HSPs in fatty acid metabolism abnormality in ovarian cancer. Pathway network analysis of 5115 mitochondrial expressed proteins in ovarian cancer revealed various lipid metabolism pathway alterations, including fatty acid degradation, fatty acid metabolism, butanoate metabolism, and propanoate metabolism. HSP60 regulated the expressions of lipid metabolism proteins in these lipid metabolism pathways, including ADH5, ECHS1, EHHADH, HIBCH, SREBP1, ACC1, and ALDH2. Further, interfering HSP60 expression inhibited migration, proliferation, and cell cycle and induced apoptosis of ovarian cancer cells in vitro. In addition, mitochondrial phosphoproteomics and immunoprecipitation-western blot experiments identified and confirmed that phosphorylation occurred at residue Ser70 in protein HSP60, which might regulate protein folding of ALDH2 and ACADS in ovarian cancers. These findings clearly demonstrated that lipid metabolism abnormality occurred in oxidative stress-related ovarian cancer and that HSP60 and its phosphorylation might regulate this lipid metabolism abnormality in ovarian cancer. It opens a novel vision in the lipid metabolism reprogramming in human ovarian cancer.
Collapse
|
5
|
Frankovsky J, Vozáriková V, Nosek J, Tomáška Ľ. Mitochondrial protein phosphorylation in yeast revisited. Mitochondrion 2021; 57:148-162. [PMID: 33412333 DOI: 10.1016/j.mito.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Protein phosphorylation is one of the best-known post-translational modifications occurring in all domains of life. In eukaryotes, protein phosphorylation affects all cellular compartments including mitochondria. High-throughput techniques of mass spectrometry combined with cell fractionation and biochemical methods yielded thousands of phospho-sites on hundreds of mitochondrial proteins. We have compiled the information on mitochondrial protein kinases and phosphatases and their substrates in Saccharomyces cerevisiae and provide the current state-of-the-art overview of mitochondrial protein phosphorylation in this model eukaryote. Using several examples, we describe emerging features of the yeast mitochondrial phosphoproteome and present challenges lying ahead in this exciting field.
Collapse
Affiliation(s)
- Jan Frankovsky
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|
6
|
Lacerda MPF, Marcelino MY, Lourencetti NMS, Neto ÁB, Gattas EA, Mendes-Giannini MJS, Fusco-Almeida AM. Methodologies and Applications of Proteomics for Study of Yeast Strains: An Update. Curr Protein Pept Sci 2019; 20:893-906. [PMID: 31322071 DOI: 10.2174/1389203720666190715145131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022]
Abstract
Yeasts are one of the mostly used microorganisms as models in several studies. A wide range of applications in different processes can be attributed to their intrinsic characteristics. They are eukaryotes and therefore valuable expression hosts that require elaborate post-translational modifications. Their arsenal of proteins has become a valuable biochemical tool for the catalysis of several reactions of great value to the food (beverages), pharmaceutical and energy industries. Currently, the main challenge in systemic yeast biology is the understanding of the expression, function and regulation of the protein pool encoded by such microorganisms. In this review, we will provide an overview of the proteomic methodologies used in the analysis of yeasts. This research focuses on the advantages and improvements in their most recent applications with an understanding of the functionality of the proteins of these microorganisms, as well as an update of the advances of methodologies employed in mass spectrometry.
Collapse
Affiliation(s)
- Maria Priscila F Lacerda
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Mônica Yonashiro Marcelino
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Natália M S Lourencetti
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Álvaro Baptista Neto
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Engineering of Bioprocesses and Biotechnology, Araraquara, Brazil
| | - Edwil A Gattas
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Engineering of Bioprocesses and Biotechnology, Araraquara, Brazil
| | | | - Ana Marisa Fusco-Almeida
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| |
Collapse
|
7
|
Shi Z. Geobacter sulfurreducens-inoculated bioelectrochemical system reveals the potential of metabolic current in defining the effect of extremely low-frequency electromagnetic field on living cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:8-14. [PMID: 30743077 DOI: 10.1016/j.ecoenv.2019.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/23/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
The effect of extremely low-frequency electromagnetic fields (ELF-EMFs) on human health has become a worldwide concern, and no molecule/factor has been established as a measurable indicator of this effect. Diseases related to ELF-EMF are generally accompanied with energy metabolic dysfunction, and the energy in metabolism often flows in terms of electrons in all living cells. Hence, this study specifically investigated the relationship between metabolic current and ELF-EMF. By applying 0-128 Gauss ELF-EMFs to Geobacter sulfurreducens-inoculated bioelectrochemical systems, we found that metabolic current was increased and oscillated in ELF-EMF-exposed G. sulfurreducens. All effects were exposure dose dependent. Moreover, the oscillation amplitude varied linearly with the ELF-EMF strength. These results reveal that metabolic current can be used as a dosimetric indicator of the effect of ELF-EMF on living organisms, including human beings.
Collapse
Affiliation(s)
- Zhenhua Shi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|