1
|
Mahmoodpour M, Kiasari BA, Karimi M, Abroshan A, Shamshirian D, Hosseinalizadeh H, Delavari A, Mirzei H. Paper-based biosensors as point-of-care diagnostic devices for the detection of cancers: a review of innovative techniques and clinical applications. Front Oncol 2023; 13:1131435. [PMID: 37456253 PMCID: PMC10348714 DOI: 10.3389/fonc.2023.1131435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
The development and rapid progression of cancer are major social problems. Medical diagnostic techniques and smooth clinical care of cancer are new necessities that must be supported by innovative diagnostic methods and technologies. Current molecular diagnostic tools based on the detection of blood protein markers are the most common tools for cancer diagnosis. Biosensors have already proven to be a cost-effective and accessible diagnostic tool that can be used where conventional laboratory methods are not readily available. Paper-based biosensors offer a new look at the world of analytical techniques by overcoming limitations through the creation of a simple device with significant advantages such as adaptability, biocompatibility, biodegradability, ease of use, large surface-to-volume ratio, and cost-effectiveness. In this review, we covered the characteristics of exosomes and their role in tumor growth and clinical diagnosis, followed by a discussion of various paper-based biosensors for exosome detection, such as dipsticks, lateral flow assays (LFA), and microfluidic paper-based devices (µPADs). We also discussed the various clinical studies on paper-based biosensors for exosome detection.
Collapse
Affiliation(s)
- Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary, The University of Tehran, Tehran, Iran
| | - Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Arezou Abroshan
- Student Research Committee, Faculty of Veterinary Medicine, Shahid Bahonar University, Kerman, Iran
| | - Danial Shamshirian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Delavari
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Zhuang M, Du D, Pu L, Song H, Deng M, Long Q, Yin X, Wang Y, Rao L. SPION-Decorated Exosome Delivered BAY55-9837 Targeting the Pancreas through Magnetism to Improve the Blood GLC Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903135. [PMID: 31774631 DOI: 10.1002/smll.201903135] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/14/2019] [Indexed: 06/10/2023]
Abstract
BAY55-9837, a potential therapeutic peptide in the treatment of type 2 diabetes mellitus (T2DM), is capable of inducing glucose (GLC)-dependent insulin secretion. However, the therapeutic benefit of BAY55-9837 is limited by its short half-life, lack of targeting ability, and poor blood GLC response. How to improve the blood GLC response of BAY55-9837 is an existing problem that needs to be solved. In this study, a method for preparing BAY55-9837-loaded exosomes coupled with superparamagnetic iron oxide nanoparticle (SPIONs) with pancreas islet targeting activity and an enhanced blood GLC response with the help of an external magnetic force (MF) is demonstrated. The plasma half-life of BAY55-9837 loaded in exosome-SPION is 27-fold longer than that of BAY55-9837. The active targeting property of SIPONs enables BAY-exosomes to gain a favorable targeting property, which improves the BAY55-9837 blood GLC response capacity with the help of an external MF. In vivo studies show that BAY-loaded exosome-based vehicle delivery enhances pancreas islet targeting under an external MF and markedly increases insulin secretion, thereby leading to the alleviation of hyperglycemia. The chronic administration of BAY-exosome-SPION/MF significantly improves glycosylated hemoglobin and lipid profiles. BAY-exosome-SPION/MF maybe a promising candidate for a peptide drug carrier for T2DM with a better blood GLC response.
Collapse
Affiliation(s)
- Manjiao Zhuang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dan Du
- School of Bioscience and Technology, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, 610500, China
| | - Lingling Pu
- School of Bioscience and Technology, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, 610500, China
| | - Haixing Song
- School of Bioscience and Technology, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, 610500, China
| | - Mian Deng
- School of Bioscience and Technology, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, 610500, China
| | - Qian Long
- School of Bioscience and Technology, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, 610500, China
| | - Xiaofei Yin
- School of Bioscience and Technology, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, 610500, China
| | - Yayu Wang
- Department of Cell Biology, Institute of Biological Medicine, Jinan University, Guangzhou, 510632, China
| | - Lei Rao
- School of Bioscience and Technology, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
3
|
Advances in exosomes technology. Clin Chim Acta 2019; 493:14-19. [DOI: 10.1016/j.cca.2019.02.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022]
|