1
|
Wulffele J, Thédié D, Glushonkov O, Bourgeois D. mEos4b Photoconversion Efficiency Depends on Laser Illumination Conditions Used in PALM. J Phys Chem Lett 2022; 13:5075-5080. [PMID: 35653150 DOI: 10.1021/acs.jpclett.2c00933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Green-to-red photoconvertible fluorescent proteins (PCFPs) are widely employed as markers in photoactivated localization microscopy (PALM). However, their highly complex photophysical behavior complicates their usage. The fact that only a limited fraction of a PCFP ensemble can form the photoconverted state upon near-UV light illumination, termed photoconversion efficiency (PCE), lowers the achievable spatial resolution in PALM and creates undercounting errors in quantitative counting applications. Here, we show that the PCE of mEos4b is not a fixed property of this PCFP but strongly depends on illumination conditions. Attempts to reduce long-lived blinking in red mEos4b by application of 488 nm light lead to a reduction of the PCE. Furthermore, the PCE of mEos4b strongly depends on the applied 405 nm power density. A refined photophysical model of mEos4b accounts for the observed effects, involving nonlinear green-state photobleaching upon violet light illumination favored by photon absorption by a putative radical dark state.
Collapse
Affiliation(s)
- Jip Wulffele
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, F-38044 Grenoble, France
| | - Daniel Thédié
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, F-38044 Grenoble, France
- University of Edinburgh, Roger Land Building, The King's Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Oleksandr Glushonkov
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, F-38044 Grenoble, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, F-38044 Grenoble, France
| |
Collapse
|
2
|
Weinelt N, Karathanasis C, Smith S, Medler J, Malkusch S, Fulda S, Wajant H, Heilemann M, van Wijk SJL. Quantitative single-molecule imaging of TNFR1 reveals zafirlukast as antagonist of TNFR1 clustering and TNFα-induced NF-ĸB signaling. J Leukoc Biol 2020; 109:363-371. [PMID: 32401398 DOI: 10.1002/jlb.2ab0420-572rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
TNFR1 is a crucial regulator of NF-ĸB-mediated proinflammatory cell survival responses and programmed cell death (PCD). Deregulation of TNFα- and TNFR1-controlled NF-ĸB signaling underlies major diseases, like cancer, inflammation, and autoimmune diseases. Therefore, although being routinely used, antagonists of TNFα might also affect TNFR2-mediated processes, so that alternative approaches to directly antagonize TNFR1 are beneficial. Here, we apply quantitative single-molecule localization microscopy (SMLM) of TNFR1 in physiologic cellular settings to validate and characterize TNFR1 inhibitory substances, exemplified by the recently described TNFR1 antagonist zafirlukast. Treatment of TNFR1-mEos2 reconstituted TNFR1/2 knockout mouse embryonic fibroblasts (MEFs) with zafirlukast inhibited both ligand-independent preligand assembly domain (PLAD)-mediated TNFR1 dimerization as well as TNFα-induced TNFR1 oligomerization. In addition, zafirlukast-mediated inhibition of TNFR1 clustering was accompanied by deregulation of acute and prolonged NF-ĸB signaling in reconstituted TNFR1-mEos2 MEFs and human cervical carcinoma cells. These findings reveal the necessity of PLAD-mediated, ligand-independent TNFR1 dimerization for NF-ĸB activation, highlight the PLAD as central regulator of TNFα-induced TNFR1 oligomerization, and demonstrate that TNFR1-mEos2 MEFs can be used to investigate TNFR1-antagonizing compounds employing single-molecule quantification and functional NF-ĸB assays at physiologic conditions.
Collapse
Affiliation(s)
- Nadine Weinelt
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt am Main, Germany
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Sonja Smith
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt am Main, Germany
| | - Juliane Medler
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auverahaus, Würzburg, Germany
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner site Frankfurt am Main, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auverahaus, Würzburg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Dietz MS, Heilemann M. Optical super-resolution microscopy unravels the molecular composition of functional protein complexes. NANOSCALE 2019; 11:17981-17991. [PMID: 31573593 DOI: 10.1039/c9nr06364a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Optical super-resolution microscopy has revolutionized our understanding of cell biology. Next to visualizing cellular structures with near-molecular spatial resolution, an additional benefit is the molecular characterization of biomolecular complexes directly in an intact cell. Single-molecule localization microscopy, as one technology out of the toolbox of super-resolution methods, generates images by detecting the position of single fluorophore labels and is particularly suited for molecular quantification. We review imaging and analysis methods employing single-molecule localization microscopy and extract molecule numbers.
Collapse
Affiliation(s)
- Marina S Dietz
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.
| | | |
Collapse
|
4
|
Baldering TN, Dietz MS, Gatterdam K, Karathanasis C, Wieneke R, Tampé R, Heilemann M. Synthetic and genetic dimers as quantification ruler for single-molecule counting with PALM. Mol Biol Cell 2019; 30:1369-1376. [PMID: 30969885 PMCID: PMC6724688 DOI: 10.1091/mbc.e18-10-0661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
How membrane proteins oligomerize determines their function. Superresolution microscopy can report on protein clustering and extract quantitative molecular information. Here, we evaluate the blinking kinetics of four photoactivatable fluorescent proteins for quantitative single-molecule microscopy. We identified mEos3.2 and mMaple3 to be suitable for molecular quantification through blinking histogram analysis. We designed synthetic and genetic dimers of mEos3.2 as well as fusion proteins of monomeric and dimeric membrane proteins as reference structures, and we demonstrate their versatile use for quantitative superresolution imaging in vitro and in situ. We further found that the blinking behavior of mEos3.2 and mMaple3 is modified by a reducing agent, offering the possibility to adjust blinking parameters according to experimental needs.
Collapse
Affiliation(s)
- Tim N Baldering
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Marina S Dietz
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Karl Gatterdam
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Christos Karathanasis
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Ralph Wieneke
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Mike Heilemann
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|