1
|
Li Q, Zhang L, Xu Q, Zhang P, Zhu S. SLICK: A Sandwich-LIke Culturing Kit for in situ Cryo-ET Sample Preparation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638381. [PMID: 39990359 PMCID: PMC11844457 DOI: 10.1101/2025.02.14.638381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
In situ cryo-electron tomography (cryo-ET) has recently been widely used in observing subcellular structures and macromolecules in their native states at high resolution. One of the reasons that it has not been more widely adopted by cell biologists and structural biologists is the difficulties in sample preparation. Here we present the Sandwich-LIke Culturing Kit (SLICK), simplifying the procedure and increasing the throughput for sample preparation for in situ cryo-ET (69 words).
Collapse
|
2
|
Liu X, Rao L, Gennerich A. Measurements of the Force-Dependent Detachment Rates of Cytoplasmic Dynein from Microtubules. Methods Mol Biol 2023; 2623:221-238. [PMID: 36602689 PMCID: PMC9879306 DOI: 10.1007/978-1-0716-2958-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cytoplasmic dynein, the largest and most intricate cytoskeletal motor protein, powers the movement of numerous intracellular cargos toward the minus ends of microtubules (MT). Despite its essential roles in eukaryotic cells, dynein's molecular mechanism, the regulatory functions of its subunits and accessory proteins, and the consequences of human disease mutations on dynein force generation remain largely unclear. Recent work combining mutagenesis, single-molecule fluorescence, and optical tweezers-based force measurement have provided valuable insights into how dynein's multiple AAA+ ATPase domains regulate dynein's attachment to MTs. Here, we describe detailed protocols for the measurements of the force-dependent dynein-MT detachment rates. We provide updated and optimized protocols for the expression and purification of a tail-truncated single-headed Saccharomyces cerevisiae dynein, for polarity-marked MT polymerization, and for the non-covalent attachment of MTs to cover glass surfaces for the measurement of dynein-MT detachment forces.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Fu X, Rao L, Li P, Liu X, Wang Q, Son AI, Gennerich A, Liu JSH. Doublecortin and JIP3 are neural-specific counteracting regulators of dynein-mediated retrograde trafficking. eLife 2022; 11:e82218. [PMID: 36476638 PMCID: PMC9799976 DOI: 10.7554/elife.82218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in the microtubule (MT)-binding protein doublecortin (DCX) or in the MT-based molecular motor dynein result in lissencephaly. However, a functional link between DCX and dynein has not been defined. Here, we demonstrate that DCX negatively regulates dynein-mediated retrograde transport in neurons from Dcx-/y or Dcx-/y;Dclk1-/- mice by reducing dynein's association with MTs and disrupting the composition of the dynein motor complex. Previous work showed an increased binding of the adaptor protein C-Jun-amino-terminal kinase-interacting protein 3 (JIP3) to dynein in the absence of DCX. Using purified components, we demonstrate that JIP3 forms an active motor complex with dynein and its cofactor dynactin with two dyneins per complex. DCX competes with the binding of the second dynein, resulting in a velocity reduction of the complex. We conclude that DCX negatively regulates dynein-mediated retrograde transport through two critical interactions by regulating dynein binding to MTs and regulating the composition of the dynein motor complex.
Collapse
Affiliation(s)
- Xiaoqin Fu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
- Key Laboratory of Perinatal Medicine of WenzhouWenzhouChina
| | - Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
- Key Laboratory of Perinatal Medicine of WenzhouWenzhouChina
| | - Xinglei Liu
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Qi Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina
| | - Alexander I Son
- Center for Neuroscience Research, Children's National Research Institute, Children's National HospitalWashingtonUnited States
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Judy Shih-Hwa Liu
- Department of Neurology, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown UniversityProvidenceUnited States
| |
Collapse
|
4
|
Pant DC, Parameswaran J, Rao L, Loss I, Chilukuri G, Parlato R, Shi L, Glass JD, Bassell GJ, Koch P, Yilmaz R, Weishaupt JH, Gennerich A, Jiang J. ALS-linked KIF5A ΔExon27 mutant causes neuronal toxicity through gain-of-function. EMBO Rep 2022; 23:e54234. [PMID: 35735139 PMCID: PMC9346498 DOI: 10.15252/embr.202154234] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Mutations in the human kinesin family member 5A (KIF5A) gene were recently identified as a genetic cause of amyotrophic lateral sclerosis (ALS). Several KIF5A ALS variants cause exon 27 skipping and are predicted to produce motor proteins with an altered C-terminal tail (referred to as ΔExon27). However, the underlying pathogenic mechanism is still unknown. Here, we confirm the expression of KIF5A mutant proteins in patient iPSC-derived motor neurons. We perform a comprehensive analysis of ΔExon27 at the single-molecule, cellular, and organism levels. Our results show that ΔExon27 is prone to form cytoplasmic aggregates and is neurotoxic. The mutation relieves motor autoinhibition and increases motor self-association, leading to drastically enhanced processivity on microtubules. Finally, ectopic expression of ΔExon27 in Drosophila melanogaster causes wing defects, motor impairment, paralysis, and premature death. Our results suggest gain-of-function as an underlying disease mechanism in KIF5A-associated ALS.
Collapse
Affiliation(s)
- Devesh C Pant
- Department of Cell BiologyEmory UniversityAtlantaGAUSA
| | | | - Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Isabel Loss
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational NeurosciencesHeidelberg UniversityMannheimGermany
| | | | - Rosanna Parlato
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational NeurosciencesHeidelberg UniversityMannheimGermany
| | - Liang Shi
- Department of Cell BiologyEmory UniversityAtlantaGAUSA
| | | | | | - Philipp Koch
- Hector Institute of Translational Brain Research, Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
| | - Rüstem Yilmaz
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational NeurosciencesHeidelberg UniversityMannheimGermany
| | - Jochen H Weishaupt
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational NeurosciencesHeidelberg UniversityMannheimGermany
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Jie Jiang
- Department of Cell BiologyEmory UniversityAtlantaGAUSA
| |
Collapse
|
5
|
Rao L, Gennerich A. Single-Molecule Studies on the Motion and Force Generation of the Kinesin-3 Motor KIF1A. Methods Mol Biol 2022; 2478:585-608. [PMID: 36063335 PMCID: PMC9609470 DOI: 10.1007/978-1-0716-2229-2_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
KIF1A is a neuron-specific member of the kinesin-3 family of microtubule (MT) plus-end-directed motor proteins. It powers the migration of nuclei in differentiating brain stem cells and the transport of synaptic precursors and dense core vesicles in axons. Its dysfunction causes severe neurodevelopmental and neurodegenerative diseases termed KIF1A-associated neurological disorders (KAND). KAND mutations span the entirety of the KIF1A protein sequence, of which the majority are located within the motor domain and are thus predicted to affect the motor's motility and force-generating properties. Unfortunately, the molecular etiologies of KAND remain poorly understood, in part because KIF1A's molecular mechanism remains unclear. Here, we describe detailed methods for how to express a tail-truncated dimeric KIF1A in E. coli cells and provide step-by-step protocols for performing single-molecule studies with total internal reflection fluorescence microscopy and optical tweezers assays, which, when combined with structure-function studies, help to decipher KIF1A's molecular mechanism.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Santarossa CC, Mickolajczyk KJ, Steinman JB, Urnavicius L, Chen N, Hirata Y, Fukase Y, Coudray N, Ekiert DC, Bhabha G, Kapoor TM. Targeting allostery in the Dynein motor domain with small molecule inhibitors. Cell Chem Biol 2021; 28:1460-1473.e15. [PMID: 34015309 DOI: 10.1016/j.chembiol.2021.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Cytoplasmic dyneins are AAA (ATPase associated with diverse cellular activities) motor proteins responsible for microtubule minus-end-directed intracellular transport. Dynein's unusually large size, four distinct nucleotide-binding sites, and conformational dynamics pose challenges for the design of potent and selective chemical inhibitors. Here we use structural approaches to develop a model for the inhibition of a well-characterized S. cerevisiae dynein construct by pyrazolo-pyrimidinone-based compounds. These data, along with functional assays of dynein motility and mutagenesis studies, suggest that the compounds inhibit dynein by engaging the regulatory ATPase sites in the AAA3 and AAA4 domains, and not by interacting with dynein's main catalytic site in the AAA1 domain. A double Walker B mutation of the AAA3 and AAA4 sites substantially reduces enzyme activity, suggesting that targeting these regulatory domains is sufficient to inhibit dynein. Our findings reveal how chemical inhibitors can be designed to disrupt allosteric communication across dynein's AAA domains.
Collapse
Affiliation(s)
- Cristina C Santarossa
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD program in Chemical Biology, The Rockefeller University, New York, NY 10065, USA
| | - Keith J Mickolajczyk
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan B Steinman
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Linas Urnavicius
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Nan Chen
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yasuhiro Hirata
- Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, USA
| | - Yoshiyuki Fukase
- Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, USA
| | - Nicolas Coudray
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY 10016, USA
| | - Damian C Ekiert
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Gira Bhabha
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
7
|
Boyle L, Rao L, Kaur S, Fan X, Mebane C, Hamm L, Thornton A, Ahrendsen JT, Anderson MP, Christodoulou J, Gennerich A, Shen Y, Chung WK. Genotype and defects in microtubule-based motility correlate with clinical severity in KIF1A-associated neurological disorder. HGG ADVANCES 2021; 2:100026. [PMID: 33880452 PMCID: PMC8054982 DOI: 10.1016/j.xhgg.2021.100026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
KIF1A-associated neurological disorder (KAND) encompasses a group of rare neurodegenerative conditions caused by variants in KIF1A,a gene that encodes an anterograde neuronal microtubule (MT) motor protein. Here we characterize the natural history of KAND in 117 individuals using a combination of caregiver or self-reported medical history, a standardized measure of adaptive behavior, clinical records, and neuropathology. We developed a heuristic severity score using a weighted sum of common symptoms to assess disease severity. Focusing on 100 individuals, we compared the average clinical severity score for each variant with in silico predictions of deleteriousness and location in the protein. We found increased severity is strongly associated with variants occurring in protein regions involved with ATP and MT binding: the P loop, switch I, and switch II. For a subset of variants, we generated recombinant proteins, which we used to assess transport in vivo by assessing neurite tip accumulation and to assess MT binding, motor velocity, and processivity using total internal reflection fluorescence microscopy. We find all modeled variants result in defects in protein transport, and we describe three classes of protein dysfunction: reduced MT binding, reduced velocity and processivity, and increased non-motile rigor MT binding. The rigor phenotype is consistently associated with the most severe clinical phenotype, while reduced MT binding is associated with milder clinical phenotypes. Our findings suggest the clinical phenotypic heterogeneity in KAND likely reflects and parallels diverse molecular phenotypes. We propose a different way to describe KAND subtypes to better capture the breadth of disease severity.
Collapse
Affiliation(s)
- Lia Boyle
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Simranpreet Kaur
- Murdoch Children’s Research Institute, Parkville, Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Xiao Fan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Caroline Mebane
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Laura Hamm
- Genetic & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Thornton
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared T. Ahrendsen
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Matthew P. Anderson
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Boston Children’s Hospital Intellectual and Developmental Disabilities Research Center, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - John Christodoulou
- Murdoch Children’s Research Institute, Parkville, Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
8
|
Liu X, Rao L, Gennerich A. The regulatory function of the AAA4 ATPase domain of cytoplasmic dynein. Nat Commun 2020; 11:5952. [PMID: 33230227 PMCID: PMC7683685 DOI: 10.1038/s41467-020-19477-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/19/2020] [Indexed: 11/08/2022] Open
Abstract
Cytoplasmic dynein is the primary motor for microtubule minus-end-directed transport and is indispensable to eukaryotic cells. Although each motor domain of dynein contains three active AAA+ ATPases (AAA1, 3, and 4), only the functions of AAA1 and 3 are known. Here, we use single-molecule fluorescence and optical tweezers studies to elucidate the role of AAA4 in dynein's mechanochemical cycle. We demonstrate that AAA4 controls the priming stroke of the motion-generating linker, which connects the dimerizing tail of the motor to the AAA+ ring. Before ATP binds to AAA4, dynein remains incapable of generating motion. However, when AAA4 is bound to ATP, the gating of AAA1 by AAA3 prevails and dynein motion can occur. Thus, AAA1, 3, and 4 work together to regulate dynein function. Our work elucidates an essential role for AAA4 in dynein's stepping cycle and underscores the complexity and crosstalk among the motor's multiple AAA+ domains.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
9
|
Brenner S, Berger F, Rao L, Nicholas MP, Gennerich A. Force production of human cytoplasmic dynein is limited by its processivity. SCIENCE ADVANCES 2020; 6:eaaz4295. [PMID: 32285003 PMCID: PMC7141836 DOI: 10.1126/sciadv.aaz4295] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/22/2020] [Indexed: 05/02/2023]
Abstract
Cytoplasmic dynein is a highly complex motor protein that generates forces toward the minus end of microtubules. Using optical tweezers, we demonstrate that the low processivity (ability to take multiple steps before dissociating) of human dynein limits its force generation due to premature microtubule dissociation. Using a high trap stiffness whereby the motor achieves greater force per step, we reveal that the motor's true maximal force ("stall force") is ~2 pN. Furthermore, an average force versus trap stiffness plot yields a hyperbolic curve that plateaus at the stall force. We derive an analytical equation that accurately describes this curve, predicting both stall force and zero-load processivity. This theoretical model describes the behavior of a kinesin motor under low-processivity conditions. Our work clarifies the true stall force and processivity of human dynein and provides a new paradigm for understanding and analyzing molecular motor force generation for weakly processive motors.
Collapse
Affiliation(s)
- Sibylle Brenner
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Florian Berger
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Matthew P. Nicholas
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Medical Scientist Training Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065, USA
- Corresponding author.
| |
Collapse
|
10
|
Self-organized networks: Darwinian evolution of dynein rings, stalks, and stalk heads. Proc Natl Acad Sci U S A 2020; 117:7799-7802. [PMID: 32205434 DOI: 10.1073/pnas.1920840117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytoskeletons are self-organized networks based on polymerized proteins: actin, tubulin, and driven by motor proteins, such as myosin, kinesin, and dynein. Their positive Darwinian evolution enables them to approach optimized functionality (self-organized criticality). Dynein has three distinct titled subunits, but how these units connect to function as a molecular motor is mysterious. Dynein binds to tubulin through two coiled coil stalks and a stalk head. The energy used to alter the head binding and propel cargo along tubulin is supplied by ATP at a ring 1,500 amino acids away. Here, we show how many details of this extremely distant interaction are explained by water waves quantified by thermodynamic scaling. Water waves have shaped all proteins throughout positive Darwinian evolution, and many aspects of long-range water-protein interactions are universal (described by self-organized criticality). Dynein water waves resembling tsunami produce nearly optimal energy transport over 1,500 amino acids along dynein's one-dimensional peptide backbone. More specifically, this paper identifies many similarities in the function and evolution of dynein compared to other cytoskeleton proteins such as actin, myosin, and tubulin.
Collapse
|
11
|
Directional Stepping Model for Yeast Dynein: Longitudinal- and Side-Step Distributions. Biophys J 2019; 117:1892-1899. [PMID: 31676137 DOI: 10.1016/j.bpj.2019.09.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/08/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
Motor proteins are biological machines that convert chemical energy stored in ATP to mechanical work. Kinesin and dynein are microtubule (MT)-associated motor proteins that, among other functions, facilitate intracellular transport. Here, we focus on dynein motility. We deduce the directional step distribution of yeast dynein motor protein on the MT surface by combing intrinsic features of the dynein and MTs. These include the probability distribution of the separation vector between the two microtubule-binding domains, the angular probability distribution of a single microtubule-binding domain translation, the existence of an MT seam defect, MT-binding sites, and theoretical extension that accounts for a load force on the motor. Our predictions are in excellent accord with the measured longitudinal step size distributions at various load forces. Moreover, we predict the side-step distribution and its dependence on longitudinal load forces, which shows a few surprising features. First, the distribution is broad. Second, in the absence of load, we find a small right-handed bias. Third, the side-step bias is susceptible to the longitudinal load force; it vanishes at a load equal to the motor stalling force and changes to a left-hand bias above that value. Fourth, our results are sensitive to the ability of the motor to explore the seam several times during its walk. Although available measurements of side-way distribution are limited, our findings are amenable to experimental check and, moreover, suggest a diversity of results depending on whether the MT seam is viable to motor sampling.
Collapse
|
12
|
Rao L, Berger F, Nicholas MP, Gennerich A. Molecular mechanism of cytoplasmic dynein tension sensing. Nat Commun 2019; 10:3332. [PMID: 31350388 PMCID: PMC6659695 DOI: 10.1038/s41467-019-11231-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic dynein is the most complex cytoskeletal motor protein and is responsible for numerous biological functions. Essential to dynein’s function is its capacity to respond anisotropically to tension, so that its microtubule-binding domains bind microtubules more strongly when under backward load than forward load. The structural mechanisms by which dynein senses directional tension, however, are unknown. Using a combination of optical tweezers, mutagenesis, and chemical cross-linking, we show that three structural elements protruding from the motor domain—the linker, buttress, and stalk—together regulate directional tension-sensing. We demonstrate that dynein’s anisotropic response to directional tension is mediated by sliding of the coiled-coils of the stalk, and that coordinated conformational changes of dynein’s linker and buttress control this process. We also demonstrate that the stalk coiled-coils assume a previously undescribed registry during dynein’s stepping cycle. We propose a revised model of dynein’s mechanochemical cycle which accounts for our findings. The cytoplasmic motor protein dynein senses directional tension; its microtubule-binding domains bind microtubules more strongly when under backward load. Here the authors use optical tweezers to show that the linker, buttress, and stalk domains together regulate directional tension-sensing.
Collapse
Affiliation(s)
- Lu Rao
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Florian Berger
- Laboratory of Sensory Neuroscience, Rockefeller University, New York, NY, 10065, USA
| | - Matthew P Nicholas
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Medical Scientist Training Program, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd, Rochester, NY, 14642, USA
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|