1
|
Alayoubi AM, Khawaji ZY, Mohammed MA, Mercier FE. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Ann Hematol 2024; 103:1805-1817. [PMID: 37736806 DOI: 10.1007/s00277-023-05457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Gene therapy represents a significant potential to revolutionize the field of hematology with applications in correcting genetic mutations, generating cell lines and animal models, and improving the feasibility and efficacy of cancer immunotherapy. Compared to different genetic engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated protein 9 (Cas9) emerged as an effective and versatile genetic editor with the ability to precisely modify the genome. The applications of genetic engineering in various hematological disorders have shown encouraging results. Monogenic hematological disorders can conceivably be corrected with single gene modification. Through the use of CRISPR-CAS9, restoration of functional red blood cells and hemostasis factors were successfully attained in sickle cell anemia, beta-thalassemia, and hemophilia disorders. Our understanding of hemato-oncology has been advanced via CRIPSR-CAS9 technology. CRISPR-CAS9 aided to build a platform of mutated genes responsible for cell survival and proliferation in leukemia. Therapeutic application of CRISPR-CAS9 when combined with chimeric antigen receptor (CAR) T cell therapy in multiple myeloma and acute lymphoblastic leukemia was feasible with attenuation of CAR T cell therapy pitfalls. Our review outlines the latest literature on the utilization of CRISPR-Cas9 in the treatment of beta-hemoglobinopathies and hemophilia disorders. We present the strategies that were employed and the findings of preclinical and clinical trials. Also, the review will discuss gene engineering in the field of hemato-oncology as a proper tool to facilitate and overcome the drawbacks of chimeric antigen receptor T cell therapy (CAR-T).
Collapse
Affiliation(s)
- Abdulfatah M Alayoubi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | | | | | - François E Mercier
- Divisions of Experimental Medicine & Hematology, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Ngo AD, Nguyen HL, Caglayan S, Chu DT. RNA therapeutics for the treatment of blood disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:273-286. [PMID: 38360003 DOI: 10.1016/bs.pmbts.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Blood disorders are defined as diseases related to the structure, function, and formation of blood cells. These diseases lead to increased years of life loss, reduced quality of life, and increased financial burden for social security systems around the world. Common blood disorder treatments such as using chemical drugs, organ transplants, or stem cell therapy have not yet approached the best goals, and treatment costs are also very high. RNA with a research history dating back several decades has emerged as a potential method to treat hematological diseases. A number of clinical trials have been conducted to pave the way for the use of RNA molecules to cure blood disorders. This novel approach takes advantage of regulatory mechanisms and the versatility of RNA-based oligonucleotides to target genes and cellular pathways involved in the pathogenesis of specific diseases. Despite positive results, currently, there is no RNA drug to treat blood-related diseases approved or marketed. Before the clinical adoption of RNA-based therapies, challenges such as safe delivery of RNA molecules to the target site and off-target effects of injected RNA in the body need to be addressed. In brief, RNA-based therapies open novel avenues for the treatment of hematological diseases, and clinical trials for approval and practical use of RNA-targeted are crucial.
Collapse
Affiliation(s)
- Anh Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Hoang Lam Nguyen
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | | | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
3
|
Abstract
Fetal hemoglobin (HbF) can blunt the pathophysiology, temper the clinical course, and offer prospects for curative therapy of sickle cell disease. This review focuses on (1) HbF quantitative trait loci and the geography of β-globin gene haplotypes, especially those found in the Middle East; (2) how HbF might differentially impact the pathophysiology and many subphenotypes of sickle cell disease; (3) clinical implications of person-to-person variation in the distribution of HbF among HbF-containing erythrocytes; and (4) reactivation of HbF gene expression using both pharmacologic and cell-based therapeutic approaches. A confluence of detailed understanding of the molecular basis of HbF gene expression, coupled with the ability to precisely target by genomic editing most areas of the genome, is producing important preliminary therapeutic results that could provide new options for cell-based therapeutics with curative intent.
Collapse
Affiliation(s)
- Martin H Steinberg
- Division of Hematology/Oncology, Department of Medicine, Center of Excellence for Sickle Cell Disease, Center for Regenerative Medicine, Genome Science Institute, Boston University School of Medicine and Boston Medical Center, Boston, MA
| |
Collapse
|
4
|
Carusillo A, Mussolino C. DNA Damage: From Threat to Treatment. Cells 2020; 9:E1665. [PMID: 32664329 PMCID: PMC7408370 DOI: 10.3390/cells9071665] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
DNA is the source of genetic information, and preserving its integrity is essential in order to sustain life. The genome is continuously threatened by different types of DNA lesions, such as abasic sites, mismatches, interstrand crosslinks, or single-stranded and double-stranded breaks. As a consequence, cells have evolved specialized DNA damage response (DDR) mechanisms to sustain genome integrity. By orchestrating multilayer signaling cascades specific for the type of lesion that occurred, the DDR ensures that genetic information is preserved overtime. In the last decades, DNA repair mechanisms have been thoroughly investigated to untangle these complex networks of pathways and processes. As a result, key factors have been identified that control and coordinate DDR circuits in time and space. In the first part of this review, we describe the critical processes encompassing DNA damage sensing and resolution. In the second part, we illustrate the consequences of partial or complete failure of the DNA repair machinery. Lastly, we will report examples in which this knowledge has been instrumental to develop novel therapies based on genome editing technologies, such as CRISPR-Cas.
Collapse
Affiliation(s)
- Antonio Carusillo
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
5
|
Steinberg MH. Treating sickle cell anemia: A new era dawns. Am J Hematol 2020; 95:338-342. [PMID: 31925819 DOI: 10.1002/ajh.25724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Martin H. Steinberg
- Department of Medicine, Division of Hematology/Oncology Boston University School of Medicine Boston Massachusetts
| |
Collapse
|
6
|
Maizels N, Davis L. Initiation of homologous recombination at DNA nicks. Nucleic Acids Res 2019; 46:6962-6973. [PMID: 29986051 PMCID: PMC6101574 DOI: 10.1093/nar/gky588] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
Discontinuities in only a single strand of the DNA duplex occur frequently, as a result of DNA damage or as intermediates in essential nuclear processes and DNA repair. Nicks are the simplest of these lesions: they carry clean ends bearing 3′-hydroxyl groups that can undergo ligation or prime new DNA synthesis. In contrast, single-strand breaks also interrupt only one DNA strand, but they carry damaged ends that require clean-up before subsequent steps in repair. Despite their apparent simplicity, nicks can have significant consequences for genome stability. The availability of enzymes that can introduce a nick almost anywhere in a large genome now makes it possible to systematically analyze repair of nicks. Recent experiments demonstrate that nicks can initiate recombination via pathways distinct from those active at double-strand breaks (DSBs). Recombination at targeted DNA nicks can be very efficient, and because nicks are intrinsically less mutagenic than DSBs, nick-initiated gene correction is useful for genome engineering and gene therapy. This review revisits some physiological examples of recombination at nicks, and outlines experiments that have demonstrated that nicks initiate homology-directed repair by distinctive pathways, emphasizing research that has contributed to our current mechanistic understanding of recombination at nicks in mammalian cells.
Collapse
Affiliation(s)
- Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA.,Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Luther Davis
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Semin Perinatol 2018; 42:487-500. [PMID: 30482590 DOI: 10.1053/j.semperi.2018.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy carries the potential to treat more than 10,000 human monogenic diseases and benefit an even greater number of complex polygenic conditions. The repurposing of CRISPR/Cas9, an ancient bacterial immune defense system, into a gene-editing technology has armed researchers with a revolutionary tool for gene therapy. However, as the breadth of research and clinical applications of this technology continues to expand, outstanding technical challenges and ethical considerations will need to be addressed before clinical applications become commonplace. Here, we review CRISPR/Cas9 technology and discuss its benefits and limitations in research and the clinical context, as well as ethical considerations surrounding the use of CRISPR gene editing.
Collapse
Affiliation(s)
- Fani Memi
- Department of Cell and Developmental Biology, University College London, 21 University Street, WC1E 6DE London, UK.
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, 300 George, 7(th) Floor, New Haven, CT 06511, United States.
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, 300 George, 7(th) Floor, New Haven, CT 06511, United States.
| |
Collapse
|