1
|
Bell ES, Shah P, Zuela-Sopilniak N, Kim D, Varlet AA, Morival JL, McGregor AL, Isermann P, Davidson PM, Elacqua JJ, Lakins JN, Vahdat L, Weaver VM, Smolka MB, Span PN, Lammerding J. Low lamin A levels enhance confined cell migration and metastatic capacity in breast cancer. Oncogene 2022; 41:4211-4230. [PMID: 35896617 PMCID: PMC9925375 DOI: 10.1038/s41388-022-02420-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Aberrations in nuclear size and shape are commonly used to identify cancerous tissue. However, it remains unclear whether the disturbed nuclear structure directly contributes to the cancer pathology or is merely a consequence of other events occurring during tumorigenesis. Here, we show that highly invasive and proliferative breast cancer cells frequently exhibit Akt-driven lower expression of the nuclear envelope proteins lamin A/C, leading to increased nuclear deformability that permits enhanced cell migration through confined environments that mimic interstitial spaces encountered during metastasis. Importantly, increasing lamin A/C expression in highly invasive breast cancer cells reflected gene expression changes characteristic of human breast tumors with higher LMNA expression, and specifically affected pathways related to cell-ECM interactions, cell metabolism, and PI3K/Akt signaling. Further supporting an important role of lamins in breast cancer metastasis, analysis of lamin levels in human breast tumors revealed a significant association between lower lamin A levels, Akt signaling, and decreased disease-free survival. These findings suggest that downregulation of lamin A/C in breast cancer cells may influence both cellular physical properties and biochemical signaling to promote metastatic progression.
Collapse
Affiliation(s)
- Emily S. Bell
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY,Current address: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA
| | - Pragya Shah
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | | | - Dongsung Kim
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Alice-Anais Varlet
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Julien L.P. Morival
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Alexandra L. McGregor
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Philipp Isermann
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | | | - Joshua J. Elacqua
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Jonathan N. Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Linda Vahdat
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA,Helen Diller Cancer Center, Department of Bioengineering and Therapeutic Sciences, and Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Marcus B. Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Paul N. Span
- Department of Radiation Oncology, Radiotherapy & OncoImmunology laboratory, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA. .,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Sanford EJ, Smolka MB. Fe-NTA Microcolumn Purification of Phosphopeptides from Immunoprecipitation (IP) Eluates for Mass Spectrometry Analysis. Bio Protoc 2021; 11:e4113. [PMID: 34458407 DOI: 10.21769/bioprotoc.4113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/18/2021] [Accepted: 04/30/2021] [Indexed: 11/02/2022] Open
Abstract
Protein phosphorylation is a nearly universal signaling mechanism. To date, a number of proteomics tools have been developed to analyze phosphorylation. Phosphoproteome-wide analyses using whole cell extracts suffer from incomplete coverage, often missing phosphorylation events from low-abundance proteins. In order to increase coverage of phosphorylation sites on individual proteins of interest ("phospho-mapping"), immunoprecipitation (IP) followed by phosphoenrichment is necessary. Unfortunately, most commercially available phosphoenrichment kits are not readily scalable to the low-microgram quantities of protein present in IP eluates. Here, we describe a simple method specifically optimized for the enrichment of phosphopeptides from IP samples using an Fe-NTA based method. This method can be added downstream of any standard immunoprecipitation protocol and upstream of any MS analysis pipeline. The protocol described herein is cost effective, uses commonly available laboratory reagents, and can be used to obtain deep coverage of individual protein phosphorylation patterns, supplementary to phosphoproteomics data. Graphical abstract: Phospho-mapping workflow for a hypothetical protein of interest.
Collapse
Affiliation(s)
- Ethan J Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB. In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 2021; 22:e51121. [PMID: 33491328 PMCID: PMC7857435 DOI: 10.15252/embr.202051121] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/11/2023] Open
Abstract
Phosphorylation is one of the most dynamic and widespread post-translational modifications regulating virtually every aspect of eukaryotic cell biology. Here, we assemble a dataset from 75 independent phosphoproteomic experiments performed in our laboratory using Saccharomyces cerevisiae. We report 30,902 phosphosites identified from cells cultured in a range of DNA damage conditions and/or arrested in distinct cell cycle stages. To generate a comprehensive resource for the budding yeast community, we aggregate our dataset with the Saccharomyces Genome Database and another recently published study, resulting in over 46,000 budding yeast phosphosites. With the goal of enhancing the identification of functional phosphorylation events, we perform computational positioning of phosphorylation sites on available 3D protein structures and systematically identify events predicted to regulate protein complex architecture. Results reveal hundreds of phosphorylation sites mapping to or near protein interaction interfaces, many of which result in steric or electrostatic "clashes" predicted to disrupt the interaction. With the advancement of Cryo-EM and the increasing number of available structures, our approach should help drive the functional and spatial exploration of the phosphoproteome.
Collapse
Affiliation(s)
- Michael C Lanz
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
- Present address:
Department of BiologyStanford UniversityStanfordCAUSA
| | - Kumar Yugandhar
- Department of Computational BiologyWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Shagun Gupta
- Department of Computational BiologyWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Ethan J Sanford
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Vitor M Faça
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Stephanie Vega
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Aaron M N Joiner
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - J Christopher Fromme
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Haiyuan Yu
- Department of Computational BiologyWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus B Smolka
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
4
|
Faca VM, Sanford EJ, Tieu J, Comstock W, Gupta S, Marshall S, Yu H, Smolka MB. Maximized quantitative phosphoproteomics allows high confidence dissection of the DNA damage signaling network. Sci Rep 2020; 10:18056. [PMID: 33093574 PMCID: PMC7582137 DOI: 10.1038/s41598-020-74939-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The maintenance of genomic stability relies on DNA damage sensor kinases that detect DNA lesions and phosphorylate an extensive network of substrates. The Mec1/ATR kinase is one of the primary sensor kinases responsible for orchestrating DNA damage responses. Despite the importance of Mec1/ATR, the current network of its identified substrates remains incomplete due, in part, to limitations in mass spectrometry-based quantitative phosphoproteomics. Phosphoproteomics suffers from lack of redundancy and statistical power for generating high confidence datasets, since information about phosphopeptide identity, site-localization, and quantitation must often be gleaned from a single peptide-spectrum match (PSM). Here we carefully analyzed the isotope label swapping strategy for phosphoproteomics, using data consistency among reciprocal labeling experiments as a central filtering rule for maximizing phosphopeptide identification and quantitation. We demonstrate that the approach allows drastic reduction of false positive quantitations and identifications even from phosphopeptides with a low number of spectral matches. Application of this approach identifies new Mec1/ATR-dependent signaling events, expanding our understanding of the DNA damage signaling network. Overall, the proposed quantitative phosphoproteomic approach should be generally applicable for investigating kinase signaling networks with high confidence and depth.
Collapse
Affiliation(s)
- Vitor Marcel Faca
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Biochemistry and Immunology and Cell-Based Therapy Center, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Ethan J Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jennifer Tieu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - William Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shagun Gupta
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shannon Marshall
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Yugandhar K, Wang TY, Leung AKY, Lanz MC, Motorykin I, Liang J, Shayhidin EE, Smolka MB, Zhang S, Yu H. MaXLinker: Proteome-wide Cross-link Identifications with High Specificity and Sensitivity. Mol Cell Proteomics 2020; 19:554-568. [PMID: 31839598 PMCID: PMC7050104 DOI: 10.1074/mcp.tir119.001847] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions play a vital role in nearly all cellular functions. Hence, understanding their interaction patterns and three-dimensional structural conformations can provide crucial insights about various biological processes and underlying molecular mechanisms for many disease phenotypes. Cross-linking mass spectrometry (XL-MS) has the unique capability to detect protein-protein interactions at a large scale along with spatial constraints between interaction partners. The inception of MS-cleavable cross-linkers enabled the MS2-MS3 XL-MS acquisition strategy that provides cross-link information from both MS2 and MS3 level. However, the current cross-link search algorithm available for MS2-MS3 strategy follows a "MS2-centric" approach and suffers from a high rate of mis-identified cross-links. We demonstrate the problem using two new quality assessment metrics ["fraction of mis-identifications" (FMI) and "fraction of interprotein cross-links from known interactions" (FKI)]. We then address this problem, by designing a novel "MS3-centric" approach for cross-link identification and implementing it as a search engine named MaXLinker. MaXLinker outperforms the currently popular search engine with a lower mis-identification rate, and higher sensitivity and specificity. Moreover, we performed human proteome-wide cross-linking mass spectrometry using K562 cells. Employing MaXLinker, we identified a comprehensive set of 9319 unique cross-links at 1% false discovery rate, comprising 8051 intraprotein and 1268 interprotein cross-links. Finally, we experimentally validated the quality of a large number of novel interactions identified in our study, providing a conclusive evidence for MaXLinker's robust performance.
Collapse
Affiliation(s)
- Kumar Yugandhar
- Department of Computational Biology, Cornell University, Ithaca, New York,14853; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853
| | - Ting-Yi Wang
- Department of Computational Biology, Cornell University, Ithaca, New York,14853; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853
| | - Alden King-Yung Leung
- Department of Computational Biology, Cornell University, Ithaca, New York,14853; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853
| | - Michael Charles Lanz
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853; Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Ievgen Motorykin
- Mass Spectrometry and Proteomics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York,14853
| | - Jin Liang
- Department of Computational Biology, Cornell University, Ithaca, New York,14853; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853
| | - Elnur Elyar Shayhidin
- Department of Computational Biology, Cornell University, Ithaca, New York,14853; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853
| | - Marcus Bustamante Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853; Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Sheng Zhang
- Mass Spectrometry and Proteomics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York,14853
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, New York,14853; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, 14853.
| |
Collapse
|
6
|
Baile MG, Guiney EL, Sanford EJ, MacGurn JA, Smolka MB, Emr SD. Activity of a ubiquitin ligase adaptor is regulated by disordered insertions in its arrestin domain. Mol Biol Cell 2019; 30:3057-3072. [PMID: 31618110 PMCID: PMC6880881 DOI: 10.1091/mbc.e19-08-0451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The protein composition of the plasma membrane is rapidly remodeled in response to changes in nutrient availability or cellular stress. This occurs, in part, through the selective ubiquitylation and endocytosis of plasma membrane proteins, which in the yeast Saccharomyces cerevisiae is mediated by the HECT E3 ubiquitin ligase Rsp5 and arrestin-related trafficking (ART) adaptors. Here, we provide evidence that the ART protein family members are composed of an arrestin fold with interspersed disordered loops. Using Art1 as a model, we show that these loop and tail regions, while not strictly required for function, regulate its activity through two separate mechanisms. Disruption of one loop mediates Art1 substrate specificity. Other loops are subjected to phosphorylation in a manner dependent on the Pho85 cyclins Clg1 and Pho80. Phosphorylation of the loops controls Art1’s localization to the plasma membrane, which promotes cargo ubiquitylation and endocytosis, demonstrating a mechanism through which Art1 activity is regulated.
Collapse
Affiliation(s)
- Matthew G Baile
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Evan L Guiney
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Ethan J Sanford
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212
| | - Marcus B Smolka
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Scott D Emr
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
7
|
Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 2019; 38:e101801. [PMID: 31393028 PMCID: PMC6745504 DOI: 10.15252/embj.2019101801] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Diego Dibitetto
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
8
|
Shami Shah A, Batrouni AG, Kim D, Punyala A, Cao W, Han C, Goldberg ML, Smolka MB, Baskin JM. PLEKHA4/kramer Attenuates Dishevelled Ubiquitination to Modulate Wnt and Planar Cell Polarity Signaling. Cell Rep 2019; 27:2157-2170.e8. [PMID: 31091453 PMCID: PMC6594551 DOI: 10.1016/j.celrep.2019.04.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/26/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Wnt signaling pathways direct key physiological decisions in development. Here, we establish a role for a pleckstrin homology domain-containing protein, PLEKHA4, as a modulator of signaling strength in Wnt-receiving cells. PLEKHA4 oligomerizes into clusters at PI(4,5)P2-rich regions of the plasma membrane and recruits the Cullin-3 (CUL3) E3 ubiquitin ligase substrate adaptor Kelch-like protein 12 (KLHL12) to these assemblies. This recruitment decreases CUL3-KLHL12-mediated polyubiquitination of Dishevelled, a central intermediate in canonical and non-canonical Wnt signaling. Knockdown of PLEKHA4 in mammalian cells demonstrates that PLEKHA4 positively regulates canonical and non-canonical Wnt signaling via these effects on the Dishevelled polyubiquitination machinery. In vivo knockout of the Drosophila melanogaster PLEKHA4 homolog, kramer, selectively affects the non-canonical, planar cell polarity (PCP) signaling pathway. We propose that PLEKHA4 tunes the sensitivities of cells toward the stimulation of Wnt or PCP signaling by sequestering a key E3 ligase adaptor controlling Dishevelled polyubiquitination within PI(4,5)P2-rich plasma membrane clusters.
Collapse
Affiliation(s)
- Adnan Shami Shah
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alex G Batrouni
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dongsung Kim
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Amith Punyala
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Wendy Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael L Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Marcus B Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Kim D, Liu Y, Oberly S, Freire R, Smolka MB. ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells. Nucleic Acids Res 2018; 46:8311-8325. [PMID: 30010936 PMCID: PMC6144784 DOI: 10.1093/nar/gky625] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
The ATR kinase is crucial for genome maintenance, but the mechanisms by which ATR controls the DNA repair machinery are not fully understood. Here, we find that long-term chronic inhibition of ATR signaling severely impairs the ability of cells to utilize homologous recombination (HR)-mediated DNA repair. Proteomic analysis shows that chronic ATR inhibition depletes the abundance of key HR factors, suggesting that spontaneous ATR signaling enhances the capacity of cells to use HR-mediated repair by controlling the abundance of the HR machinery. Notably, ATR controls the abundance of HR factors largely via CHK1-dependent transcription, and can also promote stabilization of specific HR proteins. Cancer cells exhibit a strong dependency on ATR signaling for maintaining elevated levels of HR factors, and we propose that increased constitutive ATR signaling caused by augmented replication stress in cancer cells drives the enhanced HR capacity observed in certain tumor types. Overall, these findings define a major pro-HR function for ATR and have important implications for therapy by providing rationale for sensitizing HR-proficient cancer cells to PARP inhibitors.
Collapse
Affiliation(s)
- Dongsung Kim
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yi Liu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Susannah Oberly
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologias Biomedicas, 38320 Tenerife, Spain
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- To whom correspondence should be addressed. Tel: +1 607 255 0274; Fax: +1 607 255 5961;
| |
Collapse
|
10
|
Lanz MC, Oberly S, Sanford EJ, Sharma S, Chabes A, Smolka MB. Separable roles for Mec1/ATR in genome maintenance, DNA replication, and checkpoint signaling. Genes Dev 2018; 32:822-835. [PMID: 29899143 PMCID: PMC6049512 DOI: 10.1101/gad.308148.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/27/2018] [Indexed: 02/02/2023]
Abstract
In this study, Lanz et al. investigated how the Mec1/ATR kinase functions in genome maintenance and replication and, using a novel genetic system to spatially manipulate Mec1 activation and action, show that the ability of Mec1 to suppress genomic instabilities is separate from a novel role in promoting DNA replication. These findings establish that the Mec1/ATR kinase initiates checkpoint signaling, promotes DNA replication, and maintains genetic stability through distinct modes of action. The Mec1/ATR kinase coordinates multiple cellular responses to replication stress. In addition to its canonical role in activating the checkpoint kinase Rad53, Mec1 also plays checkpoint-independent roles in genome maintenance that are not well understood. Here we used a combined genetic–phosphoproteomic approach to manipulate Mec1 activation and globally monitor Mec1 signaling, allowing us to delineate distinct checkpoint-independent modes of Mec1 action. Using cells in which endogenous Mec1 activators were genetically ablated, we found that expression of “free” Mec1 activation domains (MADs) can robustly activate Mec1 and rescue the severe DNA replication and growth defects of these cells back to wild-type levels. However, unlike the activation mediated by endogenous activator proteins, “free” MADs are unable to stimulate Mec1-mediated suppression of gross chromosomal rearrangements (GCRs), revealing that Mec1's role in genome maintenance is separable from a previously unappreciated proreplicative function. Both Mec1's functions in promoting replication and suppressing GCRs are independent of the downstream checkpoint kinases. Additionally, Mec1-dependent GCR suppression seems to require localized Mec1 action at DNA lesions, which correlates with the phosphorylation of activator-proximal substrates involved in homologous recombination-mediated DNA repair. These findings establish that Mec1 initiates checkpoint signaling, promotes DNA replication, and maintains genetic stability through distinct modes of action.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Susannah Oberly
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics.,Laboratory for Molecular Infection Medicine (MIMS), Umeå University, Umeå SE 90187, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics.,Laboratory for Molecular Infection Medicine (MIMS), Umeå University, Umeå SE 90187, Sweden
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|