1
|
Loher P, Londin E, Ilieva H, Pasinelli P, Rigoutsos I. Re-Analyses of Samples From Amyotrophic Lateral Sclerosis Patients and Controls Identify Many Novel Small RNAs With Diagnostic And Prognostic Potential. Mol Neurobiol 2025:10.1007/s12035-025-04747-2. [PMID: 39982687 DOI: 10.1007/s12035-025-04747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a highly heterogeneous disease for which accurate diagnostic and prognostic biomarkers are needed. Toward this goal, we reanalyzed two published collections of datasets generated from the plasma and serum of ALS patients and controls. We profiled these datasets for isoforms of microRNAs (miRNAs) known as isomiRs, transfer RNA-derived fragments (tRFs), and ribosomal RNA-derived fragments (rRFs), placing all remaining reads into a group labeled "not-itrs." We found that plasma and serum are rich in isomiRs (canonical, non-canonical, and non-templated), tRFs, rRFs, and members of an emerging class of small RNAs known as Y RNA-derived fragments (yRFs). In both analyzed collections, we found many isomiRs, tRFs, rRFs, and yRFs that are differentially abundant between patients and controls. We also performed a survival analysis that considered Riluzole treatment status, demographics (age at onset, age at enrollment, sex), and disease characteristics (ALSFRS, rD50, onset type) and found many of the differentially abundant small RNAs to be associated with survival time, with some of these associations being independent of Riluzole treatment. Unexpectedly, many not-itrs that did not map to the human genome mapped exactly to sequences from the SILVA database of ribosomal DNAs (rDNAs). Not-itrs from the plasma datasets mapped primarily to rDNAs from the order of Burkholderiales, and several of them were associated with patient survival. Not-itrs from the serum datasets also showed support for rDNA from Burkholderiales but a stronger support for rDNAs from the fungi group of the Nucletmycea taxon. The findings suggest that many previously unexplored small non-coding RNAs, including human isomiRs, tRFs, rRFs, and yRFs, could potentially serve as novel diagnostic and prognostic biomarkers for ALS.
Collapse
Affiliation(s)
- Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Eric Londin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hristelina Ilieva
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience & Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Piera Pasinelli
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience & Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
2
|
Establishment of an Absolute Quantitative Method to Detect a Plasma tRNA-Derived Fragment and Its Application in the Non-Invasive Diagnosis of Gastric Cancer. Int J Mol Sci 2022; 24:ijms24010322. [PMID: 36613767 PMCID: PMC9820402 DOI: 10.3390/ijms24010322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
(1) Transfer RNA (tRNA)-derived fragments (tRFs) are a new category of regulatory non-coding RNAs with distinct biological functions in cancer. They are produced from pre-tRNAs or mature tRNAs and their sequences are relatively short; thus, the amplification of tRFs, especially those in body fluids, is faced with certain technical difficulties. In this study, we established a quantitative method to detect plasma tRF-27-87R8WP9N1E5 (tRF-27) and used it to screen gastric cancer patients. (2) A specific stem-loop-structure reverse transcription primer, a TaqMan probe, and amplification primers for tRF-27 were prepared, and the absolute quantitative method was used to measure plasma tRF-27 levels. To determine the noninvasive diagnostic value of tRF-27 in gastric cancer, plasma tRF-27 levels in patients with benign and malignant lesions (120 healthy individuals, 48 patients with benign lesions, 48 patients with precancerous lesions, and 72 patients with early gastric cancer) were analyzed. Plasma tRF-27 levels were also analyzed in 106 preoperative gastric cancer patients, 106 postoperative gastric cancer patients, and 120 healthy individuals. Survival curves and Cox regression models were established and analyzed. (3) A new absolute quantitative method to determine the plasma tRF-27 copy number was established. Plasma tRF-27 levels were significantly increased in gastric cancer patients compared to healthy individuals, and the area under the receiver operating characteristic curve was 0.7767, when the cutoff value was 724,807 copies/mL, with sensitivity and specificity values of 0.6226 and 0.8917, respectively. The positive predictive and negative predictive values were 83.50% and 72.80%, respectively. Plasma tRF-27 levels in postoperative gastric cancer patients were significantly decreased compared to preoperative gastric cancer patients and tended to the levels of healthy individuals. Moreover, tRF-27 levels were closely related to tumor size and Ki67 expression in gastric cancer patients. Prognostic analysis showed that tRF-27 may be an independent predictor of overall survival. (4) This novel and non-invasive method of measuring plasma tRF-27 levels was valuable in the early diagnosis of gastric cancer.
Collapse
|
3
|
Meseguer S, Rubio MP. mt tRFs, New Players in MELAS Disease. Front Physiol 2022; 13:800171. [PMID: 35273517 PMCID: PMC8902416 DOI: 10.3389/fphys.2022.800171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is an OXPHOS disease mostly caused by the m.3243A>G mutation in the mitochondrial tRNALeu(UUR) gene. Recently, we have shown that the mutation significantly changes the expression pattern of several mitochondrial tRNA-derived small RNAs (mt tsRNAs or mt tRFs) in a cybrid model of MELAS and in fibroblasts from MELAS patients versus control cells. Among them are those derived from mt tRNA LeuUUR containing or not the m.3243A>G mutation (mt 5′-tRF LeuUUR-m.3243A>G and mt 5′-tRF LeuUUR), whose expression levels are, respectively, increased and decreased in both MELAS cybrids and fibroblasts. Here, we asked whether mt 5′-tRF LeuUUR and mt 5′-tRF LeuUUR-m.3243A>G are biologically relevant and whether these mt tRFs are detected in diverse patient samples. Treatment with a mimic oligonucleotide of mt tRNA LeuUUR fragment (mt 5′-tRF LeuUUR) showed a therapeutic potential since it partially restored mitochondrial respiration in MELAS cybrids. Moreover, these mt tRFs could be detected in biofluids like urine and blood. We also investigated the participation of miRNA pathway components Dicer and Ago2 in the mt tRFs biogenesis process. We found that Dicer and Ago2 localize in the mitochondria of MELAS cybrids and that immunoprecipitation of these proteins in cytoplasm and mitochondria fractions revealed an increased mt tRF/mt tRNA ratio in MELAS condition compared to WT. These preliminary results suggest an involvement of Dicer and Ago2 in the mechanism of mt tRF biogenesis and action.
Collapse
Affiliation(s)
- Salvador Meseguer
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Mari-Paz Rubio
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
4
|
Liu B, Cao J, Wang X, Guo C, Liu Y, Wang T. Deciphering the tRNA-derived small RNAs: origin, development, and future. Cell Death Dis 2021; 13:24. [PMID: 34934044 PMCID: PMC8692627 DOI: 10.1038/s41419-021-04472-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs), a novel category of small noncoding RNAs, are enzymatically cleaved from tRNAs. Previous reports have shed some light on the roles of tsRNAs in the development of human diseases. However, our knowledge about tsRNAs is still relatively lacking. In this paper, we review the biogenesis, classification, subcellular localization as well as action mechanism of tsRNAs, and discuss the association between chemical modifications of tRNAs and the production and functions of tsRNAs. Furthermore, using immunity, metabolism, and malignancy as examples, we summarize the molecular mechanisms of tsRNAs in diseases and evaluate the potential of tsRNAs as new biomarkers and therapeutic targets. At the same time, we compile and introduce several resource databases that are currently publicly available for analyzing tsRNAs. Finally, we discuss the challenges associated with research in this field and future directions.
Collapse
Affiliation(s)
- Bowen Liu
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China.
| | - Jinling Cao
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Xiangyun Wang
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Chunlei Guo
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Yunxia Liu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tianjiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, 300071, Tianjin, PR China
| |
Collapse
|
5
|
Yuan Y, Li J, He Z, Fan X, Mao X, Yang M, Yang D. tRNA-derived fragments as New Hallmarks of Aging and Age-related Diseases. Aging Dis 2021; 12:1304-1322. [PMID: 34341710 PMCID: PMC8279533 DOI: 10.14336/ad.2021.0115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/15/2021] [Indexed: 01/02/2023] Open
Abstract
tRNA-derived fragments (tRFs), which are non-coding RNAs produced via tRNA cleavage with lengths of 14 to 50 nucleotides, originate from precursor tRNAs or mature tRNAs and exist in a wide range of organisms. tRFs are produced not by random fracture of tRNAs but by specific mechanisms. Considerable evidence shows that tRFs are detectable in model organisms of different ages and are associated with age-related diseases in humans, such as cancer and neurodegenerative diseases. In this literature review, the origin and classification of tRFs and the regulatory mechanisms of tRFs in aging and age-related diseases are summarized. We also describe the available tRF databases and research techniques and lay a foundation for the exploration of tRFs as biomarkers for the diagnosis and treatment of aging and age-related diseases.
Collapse
Affiliation(s)
- Ya Yuan
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiamei Li
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhi He
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaolan Fan
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xueping Mao
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Deying Yang
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
6
|
Zhu L, Li Z, Yu X, Ruan Y, Shen Y, Shao Y, Zhang X, Ye G, Guo J. The tRNA-derived fragment 5026a inhibits the proliferation of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway. Stem Cell Res Ther 2021; 12:418. [PMID: 34294122 PMCID: PMC8296675 DOI: 10.1186/s13287-021-02497-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background Recently, tRNA-derived fragments (tRFs) have been shown to serve important biological functions. However, the role of tRFs in gastric cancer has not been fully elucidated. This study aimed to identify the tumor suppressor role of tRF-5026a (tRF-18-79MP9P04) in gastric cancer. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was first used to detect tRF-5026a expression levels in gastric cancer tissues and patient plasma. Next, the relationship between tRF-5026a levels and clinicopathological features in gastric cancer patients was assessed. Cell lines with varying tRF-5026a levels were assessed by measuring tRF-5026a using qRT-PCR. After transfecting cell lines with a tRF-5026a mimic or inhibitor, cell proliferation, colony formation, migration, apoptosis, and cell cycle were evaluated. The expression levels of related proteins in the PTEN/PI3K/AKT pathway were also analyzed by Western blotting. Finally, the effect of tRF-5026a on tumor growth was tested using subcutaneous tumor models in nude mice. Results tRF-5026a was downregulated in gastric cancer patient tissues and plasma samples. tRF-5026a levels were closely related to tumor size, had a certain diagnostic value, and could be used to predict overall survival. tRF-5026a was also downregulated in gastric cancer cell lines. tRF-5026a inhibited the proliferation, migration, and cell cycle progression of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway. Animal experiments showed that upregulation of tRF-5026a effectively inhibited tumor growth. Conclusions tRF-5026a (tRF-18-79MP9P04) is a promising biomarker for gastric cancer diagnostics and has tumor suppressor effects mediated through the PTEN/PI3K/AKT signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02497-1.
Collapse
Affiliation(s)
- Linwen Zhu
- Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315020, China.,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.,Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315041, China
| | - Zhe Li
- Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315020, China.,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Yao Ruan
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Yijing Shen
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Yongfu Shao
- Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315020, China.,Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China
| | - Xinjun Zhang
- Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315020, China.,Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315020, China.,Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China
| | - Junming Guo
- Department of Gastroenterology, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315020, China. .,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China. .,Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
7
|
Meseguer S. MicroRNAs and tRNA-Derived Small Fragments: Key Messengers in Nuclear-Mitochondrial Communication. Front Mol Biosci 2021; 8:643575. [PMID: 34026824 PMCID: PMC8138316 DOI: 10.3389/fmolb.2021.643575] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are not only important as energy suppliers in cells but also participate in other biological processes essential for cell growth and survival. They arose from α-proteobacterial predecessors through endosymbiosis and evolved transferring a large part of their genome to the host cell nucleus. Such a symbiotic relationship has been reinforced over time through increasingly complex signaling mechanisms between the host cell and mitochondria. So far, we do not have a complete view of the mechanisms that allow the mitochondria to communicate their functional status to the nucleus and trigger adaptive and compensatory responses. Recent findings place two classes of small non-coding RNAs (sncRNAs), microRNAs (miRNAs), and tRNA-derived small fragments, in such a scenario, acting as key pieces in the mitochondria-nucleus cross-talk. This review highlights the emerging roles and the interrelation of these sncRNAs in different signaling pathways between mitochondria and the host cell. Moreover, we describe in what way alterations of these complex regulatory mechanisms involving sncRNAs lead to diseases associated with mitochondrial dysfunction. In turn, these discoveries provide novel prognostic biomarker candidates and/or potential therapeutic targets.
Collapse
Affiliation(s)
- Salvador Meseguer
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
8
|
Shen Y, Xie Y, Yu X, Zhang S, Wen Q, Ye G, Guo J. Clinical diagnostic values of transfer RNA-derived fragment tRF-19-3L7L73JD and its effects on the growth of gastric cancer cells. J Cancer 2021; 12:3230-3238. [PMID: 33976732 PMCID: PMC8100793 DOI: 10.7150/jca.51567] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background and aim: Medicine has made great progress, but gastric cancer is still one of the most common malignant tumors worldwide. tRNA-derived fragments (tRFs), a type of small non-coding RNA, have been found to play important roles in cancers. Due to an abundance of modifications, tRFs have the potential to serve as cancer biomarkers. However, the relationship between tRFs and gastric cancer is still largely unclear. We have identified a new tRF, tRF-19-3L7L73JD, found to be expressed at a lower level in gastric cancer patients than healthy controls. Our study aims to explore the diagnostic value of tRF-19-3L7L73JD screening in gastric cancer and to investigate its effects on the growth of gastric cancer cells. Methods: Using quantitative reverse transcription-polymerase chain reaction, we identified tRF-3L7L73JD as differentially expressed in plasma from gastric cancer patients compared to healthy controls. We measured tRF-3L7L73JD levels in plasma from 40 gastric cancer patients and healthy controls. Furthermore, we tested another cohort containing 89 gastric cancer patients and 98 healthy controls to validate our findings. Next, we analyzed the relationship between levels of tRF-19-3L7L73JD in plasma and clinicopathological data of gastric cancer patients, and then evaluated the effects of tRF-19-3L7L73JD on gastric cancer cell growth. Cell proliferation was measured by the Cell Counting Kit‐8 and clone formation experiments after transfer with tRF-19-3L7L73JD mimics. The changes in cell migration ability were explored through the scratch and Transwell experiments. Finally, we explored changes in apoptosis and cell cycle by flow cytometry. Results: tRF-19-3L7L73JD showed lower expression in the tested gastric cancer patients. In the validation cohort tRF-19-3L7L73JD was also expressed at low levels in the pre-operative plasma group compared with healthy plasma and post-operative plasma groups. Additionally, a comparison of gastric cancer cell lines with normal gastric epithelial cell lines produced the same result. We found that tRF-19-3L7L73JD expression in patients was related to tumor size. The area under the curve (AUC) was 0.6230, with sensitivity and specificity of 0.4045 and 0.7959, respectively. Cellular function studies revealed that tRF-19-3L7L73JD inhibited cell proliferation and migration, induced apoptosis, and arrested cells at G0/G1 phases, suggesting it may suppress the development of gastric cancer. Conclusion: The results suggest that tRF-19-3L7L73JD may be useful as a biomarker of gastric cancer.
Collapse
Affiliation(s)
- Yijing Shen
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.,Ningbo No. 1 Hospital Affiliated to Ningbo University School of Medicine
| | - Shuangshuang Zhang
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Qiuyan Wen
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Institute of Digestive Diseases of Ningbo University, Ningbo 315020, China
| | - Junming Guo
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.,Institute of Digestive Diseases of Ningbo University, Ningbo 315020, China
| |
Collapse
|
9
|
Molla-Herman A, Angelova MT, Ginestet M, Carré C, Antoniewski C, Huynh JR. tRNA Fragments Populations Analysis in Mutants Affecting tRNAs Processing and tRNA Methylation. Front Genet 2020; 11:518949. [PMID: 33193603 PMCID: PMC7586317 DOI: 10.3389/fgene.2020.518949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/03/2020] [Indexed: 01/16/2023] Open
Abstract
tRNA fragments (tRFs) are a class of small non-coding RNAs (sncRNAs) derived from tRNAs. tRFs are highly abundant in many cell types including stem cells and cancer cells, and are found in all domains of life. Beyond translation control, tRFs have several functions ranging from transposon silencing to cell proliferation control. However, the analysis of tRFs presents specific challenges and their biogenesis is not well understood. They are very heterogeneous and highly modified by numerous post-transcriptional modifications. Here we describe a bioinformatic pipeline (tRFs-Galaxy) to study tRFs populations and shed light onto tRNA fragments biogenesis in Drosophila melanogaster. Indeed, we used small RNAs Illumina sequencing datasets extracted from wild type and mutant ovaries affecting two different highly conserved steps of tRNA biogenesis: 5'pre-tRNA processing (RNase-P subunit Rpp30) and tRNA 2'-O-methylation (dTrm7_34 and dTrm7_32). Using our pipeline, we show how defects in tRNA biogenesis affect nuclear and mitochondrial tRFs populations and other small non-coding RNAs biogenesis, such as small nucleolar RNAs (snoRNAs). This tRF analysis workflow will advance the current understanding of tRFs biogenesis, which is crucial to better comprehend tRFs roles and their implication in human pathology.
Collapse
Affiliation(s)
- Anahi Molla-Herman
- Collège de France, CIRB, CNRS Inserm UMR 7241, PSL Research University, Paris, France
| | - Margarita T. Angelova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Maud Ginestet
- Collège de France, CIRB, CNRS Inserm UMR 7241, PSL Research University, Paris, France
| | - Clément Carré
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Jean-René Huynh
- Collège de France, CIRB, CNRS Inserm UMR 7241, PSL Research University, Paris, France
| |
Collapse
|
10
|
Drino A, Oberbauer V, Troger C, Janisiw E, Anrather D, Hartl M, Kaiser S, Kellner S, Schaefer MR. Production and purification of endogenously modified tRNA-derived small RNAs. RNA Biol 2020; 17:1104-1115. [PMID: 32138588 PMCID: PMC7549616 DOI: 10.1080/15476286.2020.1733798] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 01/20/2023] Open
Abstract
During particular stress conditions, transfer RNAs (tRNAs) become substrates of stress-induced endonucleases, resulting in the production of distinct tRNA-derived small RNAs (tsRNAs). These small RNAs have been implicated in a wide range of biological processes, but how isoacceptor and even isodecoder-specific tsRNAs act at the molecular level is still poorly understood. Importantly, stress-induced tRNA cleavage affects only a few tRNAs of a given isoacceptor or isodecoder, raising the question as to how such limited molecule numbers could exert measurable biological impact. While the molecular function of individual tsRNAs is likely mediated through association with other molecules, addressing the interactome of specific tsRNAs has only been attempted by using synthetic RNA sequences. Since tRNAs carry post-transcriptional modifications, tsRNAs are likely modified but the extent of their modifications remains largely unknown. Here, we developed a biochemical framework for the production and purification of specific tsRNAs using human cells. Preparative scale purification of tsRNAs from biological sources should facilitate experimentally addressing as to how exactly these small RNAs mediate the multitude of reported molecular functions.
Collapse
Affiliation(s)
- Aleksej Drino
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Vienna, Austria
| | - Vera Oberbauer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Vienna, Austria
| | - Conor Troger
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Vienna, Austria
| | - Eva Janisiw
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Facility, Max Perutz Laboratories (MPL), Vienna Biocenter (VBC), Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Laboratories (MPL), Vienna Biocenter (VBC), Vienna, Austria
| | | | | | - Matthias R. Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Vienna, Austria
| |
Collapse
|
11
|
Xie Y, Yao L, Yu X, Ruan Y, Li Z, Guo J. Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct Target Ther 2020; 5:109. [PMID: 32606362 PMCID: PMC7326991 DOI: 10.1038/s41392-020-00217-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
tRNA-derived small RNAs (tsRNAs), including tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), are small regulatory RNAs processed from mature tRNAs or precursor tRNAs. tRFs and tiRNAs play biological roles through a variety of mechanisms by interacting with proteins or mRNA, inhibiting translation, and regulating gene expression, the cell cycle, and chromatin and epigenetic modifications. The establishment and application of research technologies are important in understanding the biological roles of tRFs and tiRNAs. To study the molecular mechanisms of tRFs and tiRNAs, researchers have used a variety of bioinformatics and molecular biology methods, such as microarray analysis, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR); Northern blotting; RNA sequencing (RNA-seq); cross-linking, ligation and sequencing of hybrids (CLASH); and photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP). This paper summarizes the classification, action mechanisms, and roles of tRFs and tiRNAs in human diseases and the related signal transduction pathways, targeted therapies, databases, and research methods associated with them.
Collapse
Affiliation(s)
- Yaoyao Xie
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Lipeng Yao
- Ningbo College of Health Sciences, Ningbo, 315000, Zhejiang, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Yao Ruan
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Zhe Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China.
| |
Collapse
|
12
|
Dysregulation of different classes of tRNA fragments in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2019; 116:24252-24258. [PMID: 31723042 DOI: 10.1073/pnas.1913695116] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common human leukemia, and dysregulation of tRNA-derived short noncoding RNA (tsRNA) (tRF-1) expression is an accompanying event in the development of this disease. tsRNAs are fragments originating from the 3' end of tRNA precursors and do not contain mature tRNA sequences. In contrast to tsRNAs, mature tRFs (tRF-3s, tRF-5s, and internal tRFs) are produced from mature tRNA sequences and are redundant fragments. We investigated tsRNA expression in CLL and determined tsRNA signatures in indolent CLL and aggressive CLL vs. normal B cells. We noticed that both ts-43 and ts-44 are derived from distinct genes of pre-tRNAHis, and are down-regulated in CLL 3- to 5-fold vs. normal B cells. Thus, we investigated expression levels of tRF-5 fragments from tRNAHis in CLL samples and healthy controls, and determined that such fragments are down-regulated by 5-fold in CLLs vs. normal controls. Given these results, we investigated the expression of all mature tRFs in CLLs vs. normal controls. We found a drastic dysregulation of the expression of mature tRFs in CLL. In aggressive CLL, for the top 15 up-regulated fragments, linear fold change varied from 2,053- to 622-fold. For the top 15 down-regulated fragments in CLL, linear fold change varied from 314- to 52-fold. In addition, 964 mature tRFs were up-regulated at least 2-fold in CLL, while 701 fragments were down-regulated at least 2-fold. Similar results were obtained for indolent CLL. Our results suggest that mature tRFs may have oncogenic and/or tumor suppressor function in CLL.
Collapse
|
13
|
Meseguer S, Navarro-González C, Panadero J, Villarroya M, Boutoual R, Sánchez-Alcázar JA, Armengod ME. The MELAS mutation m.3243A>G alters the expression of mitochondrial tRNA fragments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1433-1449. [PMID: 31195049 DOI: 10.1016/j.bbamcr.2019.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 04/26/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022]
Abstract
Recent evidences highlight the importance of mitochondria-nucleus communication for the clinical phenotype of oxidative phosphorylation (OXPHOS) diseases. However, the participation of small non-coding RNAs (sncRNAs) in this communication has been poorly explored. We asked whether OXPHOS dysfunction alters the production of a new class of sncRNAs, mitochondrial tRNA fragments (mt tRFs), and, if so, whether mt tRFs play a physiological role and their accumulation is controlled by the action of mt tRNA modification enzymes. To address these questions, we used a cybrid model of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), an OXPHOS disease mostly caused by mutation m.3243A>G in the mitochondrial tRNALeu(UUR) gene. High-throughput analysis of small-RNA-Seq data indicated that m.3243A>G significantly changed the expression pattern of mt tRFs. A functional analysis of potential mt tRFs targets (performed under the assumption that these tRFs act as miRNAs) indicated an association with processes that involve the most common affected tissues in MELAS. We present evidences that mt tRFs may be biologically relevant, as one of them (mt i-tRF GluUUC), likely produced by the action of the nuclease Dicer and whose levels are Ago2 dependent, down-regulates the expression of mitochondrial pyruvate carrier 1 (MPC1), promoting the build-up of extracellular lactate. Therefore, our study underpins the idea that retrograde signaling from mitochondria is also mediated by mt tRFs. Finally, we show that accumulation of mt i-tRF GluUUC depends on the modification status of mt tRNAs, which is regulated by the action of stress-responsive miRNAs on mt tRNA modification enzymes.
Collapse
Affiliation(s)
- Salvador Meseguer
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Carmen Navarro-González
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Joaquin Panadero
- Unidad de Genómica, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7ª planta, Valencia 46026, Spain.
| | - Magda Villarroya
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Rachid Boutoual
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Jose Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - M-Eugenia Armengod
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) node 721, Madrid 28029, Spain.
| |
Collapse
|
14
|
Zhu L, Li T, Shen Y, Yu X, Xiao B, Guo J. Using tRNA halves as novel biomarkers for the diagnosis of gastric cancer. Cancer Biomark 2019; 25:169-176. [DOI: 10.3233/cbm-182184] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Linwen Zhu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tianwen Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yijing Shen
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiuchong Yu
- Department of Gastrointestinal Surgery, Ningbo No. 1 Hospital and the Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Bingxiu Xiao
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
15
|
tRNA-derived fragments and tRNA halves: The new players in cancers. Cancer Lett 2019; 452:31-37. [DOI: 10.1016/j.canlet.2019.03.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 01/27/2023]
|
16
|
Magee R, Londin E, Rigoutsos I. TRNA-derived fragments as sex-dependent circulating candidate biomarkers for Parkinson's disease. Parkinsonism Relat Disord 2019; 65:203-209. [PMID: 31402278 DOI: 10.1016/j.parkreldis.2019.05.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Parkinson's Disease (PD) is diagnosed clinically. Reliable non-invasive PD biomarkers are actively sought. Transfer RNAs produce short non-coding RNAs, the tRNA-derived fragments (tRF). tRF have been shown to play diverse roles, including in amyotrophic lateral sclerosis, and the response to ischemic stroke. Rich tRF populations are being reported in biofluids. We explored the possibility that tRF can serve as non-invasive biomarkers for PD. METHODS We collected existing RNA-seq samples and re-analyzed a total of 254 legacy datasets from 3 previous studies, from male and female PD patients and controls that belong to three categories: prefrontal cortex samples from 29 patients and 33 controls; cerebrospinal fluid (CSF) samples from 63 patients and 64 controls; and, serum samples from 34 patients and 31 controls. First, we identified tRF exhaustively and deterministically in every dataset. Second, we determined tRF that are differentially abundant (DA) between PD and control samples, using uncorrected t-tests. Lastly, we assessed all the DA tRF from the previous step with Partial Least Squares - Discriminant Analysis (PLS-DA) to stringently sub-select tRF that can distinguish PD patients from controls. RESULTS We show that PLS-DA identified tRF from prefrontal cortex, CSF, and serum that can distinguish PD patients from controls. A handful of identified tRF were previously investigated in neurological contexts. Signatures built from relatively few tRF suffice to distinguish PD from control in each category of samples with high sensitivity (89-100%) and specificity (79-98%). CONCLUSION tRF-based signatures are promising candidates that warrant further evaluation as non-invasive PD biomarkers.
Collapse
Affiliation(s)
- Rogan Magee
- Computational Medicine Center, Jefferson Alumni Hall #M81, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Eric Londin
- Computational Medicine Center, Jefferson Alumni Hall #M81, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Jefferson Alumni Hall #M81, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
17
|
Telonis AG, Loher P, Magee R, Pliatsika V, Londin E, Kirino Y, Rigoutsos I. tRNA Fragments Show Intertwining with mRNAs of Specific Repeat Content and Have Links to Disparities. Cancer Res 2019; 79:3034-3049. [PMID: 30996049 DOI: 10.1158/0008-5472.can-19-0789] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023]
Abstract
tRNA-derived fragments (tRF) are a class of potent regulatory RNAs. We mined the datasets from The Cancer Genome Atlas (TCGA) representing 32 cancer types with a deterministic and exhaustive pipeline for tRNA fragments. We found that mitochondrial tRNAs contribute disproportionally more tRFs than nuclear tRNAs. Through integrative analyses, we uncovered a multitude of statistically significant and context-dependent associations between the identified tRFs and mRNAs. In many of the 32 cancer types, these associations involve mRNAs from developmental processes, receptor tyrosine kinase signaling, the proteasome, and metabolic pathways that include glycolysis, oxidative phosphorylation, and ATP synthesis. Even though the pathways are common to multiple cancers, the association of specific mRNAs with tRFs depends on and differs from cancer to cancer. The associations between tRFs and mRNAs extend to genomic properties as well; specifically, tRFs are positively correlated with shorter genes that have a higher density in repeats, such as ALUs, MIRs, and ERVLs. Conversely, tRFs are negatively correlated with longer genes that have a lower repeat density, suggesting a possible dichotomy between cell proliferation and differentiation. Analyses of bladder, lung, and kidney cancer data indicate that the tRF-mRNA wiring can also depend on a patient's sex. Sex-dependent associations involve cyclin-dependent kinases in bladder cancer, the MAPK signaling pathway in lung cancer, and purine metabolism in kidney cancer. Taken together, these findings suggest diverse and wide-ranging roles for tRFs and highlight the extensive interconnections of tRFs with key cellular processes and human genomic architecture. SIGNIFICANCE: Across 32 TCGA cancer contexts, nuclear and mitochondrial tRNA fragments exhibit associations with mRNAs that belong to concrete pathways, encode proteins with particular destinations, have a biased repeat content, and are sex dependent.
Collapse
Affiliation(s)
- Aristeidis G Telonis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rogan Magee
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Venetia Pliatsika
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Eric Londin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yohei Kirino
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
18
|
Srinivasan S, Yeri A, Cheah PS, Chung A, Danielson K, De Hoff P, Filant J, Laurent CD, Laurent LD, Magee R, Moeller C, Murthy VL, Nejad P, Paul A, Rigoutsos I, Rodosthenous R, Shah RV, Simonson B, To C, Wong D, Yan IK, Zhang X, Balaj L, Breakefield XO, Daaboul G, Gandhi R, Lapidus J, Londin E, Patel T, Raffai RL, Sood AK, Alexander RP, Das S, Laurent LC. Small RNA Sequencing across Diverse Biofluids Identifies Optimal Methods for exRNA Isolation. Cell 2019; 177:446-462.e16. [PMID: 30951671 PMCID: PMC6557167 DOI: 10.1016/j.cell.2019.03.024] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/29/2018] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
Poor reproducibility within and across studies arising from lack of knowledge regarding the performance of extracellular RNA (exRNA) isolation methods has hindered progress in the exRNA field. A systematic comparison of 10 exRNA isolation methods across 5 biofluids revealed marked differences in the complexity and reproducibility of the resulting small RNA-seq profiles. The relative efficiency with which each method accessed different exRNA carrier subclasses was determined by estimating the proportions of extracellular vesicle (EV)-, ribonucleoprotein (RNP)-, and high-density lipoprotein (HDL)-specific miRNA signatures in each profile. An interactive web-based application (miRDaR) was developed to help investigators select the optimal exRNA isolation method for their studies. miRDar provides comparative statistics for all expressed miRNAs or a selected subset of miRNAs in the desired biofluid for each exRNA isolation method and returns a ranked list of exRNA isolation methods prioritized by complexity, expression level, and reproducibility. These results will improve reproducibility and stimulate further progress in exRNA biomarker development.
Collapse
Affiliation(s)
- Srimeenakshi Srinivasan
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ashish Yeri
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pike See Cheah
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Allen Chung
- Department of Surgery, University of California, San Francisco and VA Medical Center San Francisco, San Francisco, CA 94121, USA
| | - Kirsty Danielson
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter De Hoff
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Justyna Filant
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clara D Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucie D Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rogan Magee
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Courtney Moeller
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Venkatesh L Murthy
- Department of Medicine, Division of Cardiovascular Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Parham Nejad
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anu Paul
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rodosthenis Rodosthenous
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ravi V Shah
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bridget Simonson
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cuong To
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - David Wong
- Department of Surgery, University of California, San Francisco and VA Medical Center San Francisco, San Francisco, CA 94121, USA
| | | | - Xuan Zhang
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Leonora Balaj
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Xandra O Breakefield
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | | | - Roopali Gandhi
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jodi Lapidus
- Oregon Health Sciences University, Portland, OR, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Robert L Raffai
- Department of Surgery, University of California, San Francisco and VA Medical Center San Francisco, San Francisco, CA 94121, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
An improved estimation of tRNA expression to better elucidate the coevolution between tRNA abundance and codon usage in bacteria. Sci Rep 2019; 9:3184. [PMID: 30816249 PMCID: PMC6395768 DOI: 10.1038/s41598-019-39369-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
The degree to which codon usage can be explained by tRNA abundance in bacterial species is often inadequate, partly because differential tRNA abundance is often approximated by tRNA copy numbers. To better understand the coevolution between tRNA abundance and codon usage, we provide a better estimate of tRNA abundance by profiling tRNA mapped reads (tRNA tpm) using publicly available RNA Sequencing data. To emphasize the feasibility of our approach, we demonstrate that tRNA tpm is consistent with tRNA abundances derived from RNA fingerprinting experiments in Escherichia coli, Bacillus subtilis, and Salmonella enterica. Furthermore, we do not observe an appreciable reduction in tRNA sequencing efficiency due to post-transcriptional methylations in the seven bacteria studied. To determine optimal codons, we calculate codon usage in highly and lowly expressed genes determined by protein per transcript. We found that tRNA tpm is sensitive to identify more translationally optimal codons than gene copy number and early tRNA fingerprinting abundances. Additionally, tRNA tpm improves the predictive power of tRNA adaptation index over codon preference. Our results suggest that dependence of codon usage on tRNA availability is not always associated with species growth-rate. Conversely, tRNA availability is better optimized to codon usage in fast-growing than slow-growing species.
Collapse
|
20
|
Oberbauer V, Schaefer MR. tRNA-Derived Small RNAs: Biogenesis, Modification, Function and Potential Impact on Human Disease Development. Genes (Basel) 2018; 9:genes9120607. [PMID: 30563140 PMCID: PMC6315542 DOI: 10.3390/genes9120607] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Transfer RNAs (tRNAs) are abundant small non-coding RNAs that are crucially important for decoding genetic information. Besides fulfilling canonical roles as adaptor molecules during protein synthesis, tRNAs are also the source of a heterogeneous class of small RNAs, tRNA-derived small RNAs (tsRNAs). Occurrence and the relatively high abundance of tsRNAs has been noted in many high-throughput sequencing data sets, leading to largely correlative assumptions about their potential as biologically active entities. tRNAs are also the most modified RNAs in any cell type. Mutations in tRNA biogenesis factors including tRNA modification enzymes correlate with a variety of human disease syndromes. However, whether it is the lack of tRNAs or the activity of functionally relevant tsRNAs that are causative for human disease development remains to be elucidated. Here, we review the current knowledge in regard to tsRNAs biogenesis, including the impact of RNA modifications on tRNA stability and discuss the existing experimental evidence in support for the seemingly large functional spectrum being proposed for tsRNAs. We also argue that improved methodology allowing exact quantification and specific manipulation of tsRNAs will be necessary before developing these small RNAs into diagnostic biomarkers and when aiming to harness them for therapeutic purposes.
Collapse
Affiliation(s)
- Vera Oberbauer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| |
Collapse
|
21
|
Shen Y, Yu X, Zhu L, Li T, Yan Z, Guo J. Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases. J Mol Med (Berl) 2018; 96:1167-1176. [PMID: 30232504 DOI: 10.1007/s00109-018-1693-y] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
The number of studies on non-coding RNAs has increased substantially in recent years owing to their importance in gene regulation. However, the biological functions of small RNAs from abundant species of housekeeping non-coding RNAs (rRNA, tRNA, etc.) remain a highly studied topic. tRNA-derived small RNAs (tsRNAs) refer to the specific cleavage of tRNAs by specific nucleases [e.g., Dicer and angiogenin (ANG)] in particular cells or tissues or under certain conditions such as stress and hypoxia. tsRNAs are a type of non-coding small RNA that are widely found in the prokaryotic and eukaryotic transcriptomes and are generated from mature tRNAs or precursor tRNAs at different sites. There are two main types of tsRNAs, tRNA-derived fragments (tRFs) and tRNA halves. tRFs are 14-30 nucleotides (nt) long and mainly consist of three subclasses: tRF-5, tRF-3, and tRF-1. tRNA halves, which are 31-40 nt long, are generated by specific cleavage in the anticodon loops of mature tRNAs. There are two types of tRNA halves, 5'-tRNA halves and 3'-tRNA halves. tsRNAs have multiple biological functions including acting as signaling molecules in stress responses and as regulators of gene expression. Additionally, they have been considered to be involved in RNA processing, cell proliferation, translation suppression, the modulation of DNA damage response, and neurodegeneration. More importantly, they are closely related to the occurrence of many human diseases such as tumors, infectious diseases, metabolic diseases, and neurological diseases. Moreover, tsRNAs have the potential to become new biomarkers for disease diagnosis. Continuous investigations will help us to understand their generation and regulatory mechanisms as well as the possible roles of tRFs and tRNA halves.
Collapse
Affiliation(s)
- Yijing Shen
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Xiuchong Yu
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University and Ningbo No. 1 Hospital, Ningbo, 315010, China
| | - Linwen Zhu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Tianwen Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Zhilong Yan
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University and Ningbo No. 1 Hospital, Ningbo, 315010, China.
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|