1
|
Zhu J, Li J, Wu J, Liu X, Lin Y, Deng H, Qin X, Wong MH, Chan LL. The Prevalence of Marine Lipophilic Phycotoxins Causes Potential Risks in a Tropical Small Island Developing State. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9815-9827. [PMID: 38768015 DOI: 10.1021/acs.est.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Tropical small island developing states (SIDS), with their geographical isolation and limited resources, heavily rely on the fisheries industry for food and revenue. The presence of marine lipophilic phycotoxins (MLPs) poses risks to their economy and human health. To understand the contamination status and potential risks, the Republic of Kiribati was selected as the representative tropical SIDS and 55 species of 256 coral reef fish encompassing multiple trophic levels and feeding strategies were collected to analyze 17 typical MLPs. Our results showed that the potential risks of ciguatoxins were the highest and approximately 62% of fish species may pose risks for consumers. Biomagnification of ciguatoxins was observed in the food web with a trophic magnification factor of 2.90. Brevetoxin-3, okadaic acid, and dinophysistoxin-1 and -2 were first reported, but the risks posed by okadaic acid and dinophysistoxins were found to be negligible. The correlation analysis revealed that fish body size and trophic position are unreliable metrics to indicate the associated risks and prevent the consumption of contaminated fish. The potential risks of MLPs in Kiribati are of concern, and our findings can serve as valuable inputs for developing food safety policies and fisheries management strategies specific to tropical SIDS contexts.
Collapse
Affiliation(s)
- Jingyi Zhu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
| | - Jing Li
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiaowan Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
| | - Yuchen Lin
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
| | - Hongzhen Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
| | - Xian Qin
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Tai Po , Hong Kong 999077, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Recent findings of paralytic shellfish toxins linked to the genus Alexandrium Halim in Mediterranean mollusc production areas. Toxicon 2019; 174:48-56. [PMID: 31989929 DOI: 10.1016/j.toxicon.2019.12.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
Paralytic shellfish poisoning is a human intoxication syndrome associated with the consumption of seafood that has been contaminated with paralytic shellfish toxins (PSTs), a group of natural neurotoxic alkaloids produced by marine dinoflagellates, including some Alexandrium species. This study presents findings of PSTs in mussels (Mytilus galloprovincialis) during 2018-2019 in several mollusc production areas of Sardinia (Italy, western Mediterranean). Investigations of the presence and abundance of PST-producing microalgal species in marine water and of the toxins associated with shellfish were carried out concomitantly. Overall, the results suggested a spatio-temporal expansion of Alexandriumpacificum and Alexandriumminutum in recent years, with an increasing number of PSTs present in molluscs and increased occurrences of toxicity cases. Liquid chromatography with fluorescence detection determined the toxin profile to be composed primarily of the carbamate gonyautoxin-5 and N-sulphocarbamoyltoxins 1 and 2. The study highlights the potential high risk to consumers of poisoning by bivalve molluscs bred in Sardinia, where shellfish production is a very important industrial sector. For this reason, routine monitoring is strongly recommended in order to mitigate any harm to human health as well as negative socio-economic consequences.
Collapse
|