1
|
Tobias T, Doran C, Nguyen H, Kumar S, Corley W, Sunasee R, Ckless K. In vitro immune and redox response induced by cationic cellulose-based nanomaterials. Toxicol In Vitro 2023; 91:105616. [PMID: 37279824 DOI: 10.1016/j.tiv.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Cellulose nanocrystals (CNCs) display remarkable strength and physicochemical properties with significant potential applications. To better understand the potential adjuvanticity of a nanomaterial, it is important to investigate the extent of the immunological response, the mechanisms by which they elicit this response, and how this response is associated with their physicochemical characteristics. In this study, we investigated the potential mechanisms of immunomodulation and redox activity of two chemically related cationic CNC derivatives (CNC-METAC-1B and CNC-METAC-2B), using human peripheral blood mononuclear cells and mouse macrophage cells (J774A.1). Our data demonstrated that the biological effects caused by these nanomaterials occurred mainly with short term exposure. We observed opposite immunomodulatory activity between the tested nanomaterials. CNC-METAC-2B, induced IL-1β secretion at 2 h while CNC-METAC-1B decreased it at 24 h of treatment. In addition, both nanomaterials caused more noticeable increases in mitochondrial reactive oxygen species (ROS) at early time. The differences in apparent sizes of the two cationic nanomaterials could explain, at least in part, the discrepancies in biological effects, despite their closely related surface charges. This work provides initial insights about the complexity of the in vitro mechanism of action of these nanomaterials as well as foundation knowledge for the development of cationic CNCs as potential immunomodulators.
Collapse
Affiliation(s)
- Tanner Tobias
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Cameron Doran
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Hoang Nguyen
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Shreshth Kumar
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Willie Corley
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Rajesh Sunasee
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA
| | - Karina Ckless
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA.
| |
Collapse
|
2
|
Zheng L, Zhao F, Ru J, Liu L, Wang Z, Wang N, Shu X, Wei Z, Guo H. Evaluation of the Effect of Inactivated Transmissible Gastroenteritis Virus Vaccine with Nano Silicon on the Phenotype and Function of Porcine Dendritic Cells. Viruses 2021; 13:v13112158. [PMID: 34834964 PMCID: PMC8620756 DOI: 10.3390/v13112158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023] Open
Abstract
A transmissible gastroenteritis virus (TGEV) is a porcine enteropathogenic coronavirus, causing acute swine enteric disease especially in suckling piglets. Mesoporous silica nanoparticles (MSNs) are safe vaccine adjuvant, which could enhance immune responses. Our previous research confirmed that nano silicon had immune-enhancing effects with inactivated TGEV vaccine. In this study, we further clarified the immune-enhancing mechanism of the inactivated TGEV vaccine with MSNs on porcine dendritic cells (DCs). Our results indicated that the inactivated TGEV vaccine with MSNs strongly enhanced the activation of the DCs. Expressions of TLR3, TLR5, TLR7, TLR9, and TLR10, cytokines IFN-α, IL-1β, IL-6, IL-12, and TNF-α, cytokine receptor CCR-7 of immature DCs were characterized and showed themselves to be significantly higher in the inactivated TGEV vaccine with the MSN group. In summary, the inactivated TGEV vaccine with MSNs has effects on the phenotype and function of porcine DCs, which helps to better understand the immune-enhancing mechanism.
Collapse
Affiliation(s)
- Lanlan Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Fujie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Jiaxi Ru
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| | - Lintao Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Zi Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Nianxiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Xiangli Shu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
- Correspondence: (Z.W.); (H.G.)
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
- Correspondence: (Z.W.); (H.G.)
| |
Collapse
|
3
|
Yamoah MA, Thai PN, Zhang XD. Transgene Delivery to Human Induced Pluripotent Stem Cells Using Nanoparticles. Pharmaceuticals (Basel) 2021; 14:334. [PMID: 33917388 PMCID: PMC8067386 DOI: 10.3390/ph14040334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/25/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) and hiPSCs-derived cells have the potential to revolutionize regenerative and precision medicine. Genetically reprograming somatic cells to generate hiPSCs and genetic modification of hiPSCs are considered the key procedures for the study and application of hiPSCs. However, there are significant technical challenges for transgene delivery into somatic cells and hiPSCs since these cells are known to be difficult to transfect. The existing methods, such as viral transduction and chemical transfection, may introduce significant alternations to hiPSC culture which affect the potency, purity, consistency, safety, and functional capacity of hiPSCs. Therefore, generation and genetic modification of hiPSCs through non-viral approaches are necessary and desirable. Nanotechnology has revolutionized fields from astrophysics to biology over the past two decades. Increasingly, nanoparticles have been used in biomedicine as powerful tools for transgene and drug delivery, imaging, diagnostics, and therapeutics. The most successful example is the recent development of SARS-CoV-2 vaccines at warp speed to combat the 2019 coronavirus disease (COVID-19), which brought nanoparticles to the center stage of biomedicine and demonstrated the efficient nanoparticle-mediated transgene delivery into human body. Nanoparticles have the potential to facilitate the transgene delivery into the hiPSCs and offer a simple and robust approach. Nanoparticle-mediated transgene delivery has significant advantages over other methods, such as high efficiency, low cytotoxicity, biodegradability, low cost, directional and distal controllability, efficient in vivo applications, and lack of immune responses. Our recent study using magnetic nanoparticles for transfection of hiPSCs provided an example of the successful applications, supporting the potential roles of nanoparticles in hiPSC biology. This review discusses the principle, applications, and significance of nanoparticles in the transgene delivery to hiPSCs and their successful application in the development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Megan A. Yamoah
- Department of Economics, University of Oxford, Oxford OX1 3UQ, UK;
| | - Phung N. Thai
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Xiao-Dong Zhang
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, USA;
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
4
|
Zor F, Selek FN, Orlando G, Williams DF. Biocompatibility in regenerative nanomedicine. Nanomedicine (Lond) 2019; 14:2763-2775. [PMID: 31612774 DOI: 10.2217/nnm-2019-0140] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Biocompatibility is a very common word that is used within biomaterial science and used for description of the interactions between the foreign material and the body. However, the meaning of biocompatibility as well as the mechanisms that collectively constitutes is still unclear. With the advance of nanotechnology, new concerns have been observed related to biocompatibility of these biomaterials. Due to their small size and variability of their physical and chemical properties, nanoparticles' (NP) distribution within the body and interactions with the target cells and tissues are highly variable. Here, we tried to provide an overview about NPs, the concept of biocompatibility and biocompatibility-related issues in nanomedicine and several different NPs.
Collapse
Affiliation(s)
- Fatih Zor
- Department of Surgery, Wake Forest University Health Sciences, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Fatma Nurefsan Selek
- Department of Surgery, Wake Forest University Health Sciences, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Giuseppe Orlando
- Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - David F Williams
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
5
|
Bai M, Dong H, Su X, Jin Y, Sun S, Zhang Y, Yang Y, Guo H. Hollow mesoporous silica nanoparticles as delivery vehicle of foot-and-mouth disease virus-like particles induce persistent immune responses in guinea pigs. J Med Virol 2019; 91:941-948. [PMID: 30701562 PMCID: PMC6594029 DOI: 10.1002/jmv.25417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
Abstract
Foot‐and‐mouth disease (FMD) is an acute and febrile infectious disease, which can cause great economic losses. Virus‐like particles (VLPs) as an advantageous antigen can induce significant specific immune response. To improve immunity of VLPs, especially, make it induce persistent immune response, the hollow mesoporous silica nanoparticles (HMSNs) as a potential nano‐adjuvant were synthesized and loaded the FMD virus (FMDV) VLPs. They were injected into guinea pigs and the specific immune response was detected. The results confirmed that HMSNs/VLPs can induce persistent humoral immunity with high‐level antibody titer for more than three months. HMSNs also improve the T‐lymphocyte proliferation and IFN‐γ induced by FMDV VLPs, and provides the ideal protection against FMDV challenge. These consequences indicated that HMSNs were good protein delivery vehicle and potential nano‐adjuvant of vaccines. We synthesized Hollow mesoporous silica nanoparticles (HMSNs), as a delivery vehicle, are ideal candidate and have many unique structural features, including relatively larger surface areas, and controlled release capability, especially, good biocompatibility compared to golden nanoparticles as adjuvant. VLPs are composed of one or more structural proteins of virus, and without viral genetic material. As a new type of safe vaccine, FMDV VLPs can induce excellent immune response as traditional vaccines. To improve specific and persistent immune responses of FMDV VLPs, It is first time that HMSN was used as delivery of FMDV VLPs. The results confirmed that HMSNs can improve specific and persistent immune responses of FMDV VLPs, as new generation adjuvant.
Collapse
Affiliation(s)
- Manyuan Bai
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Hu Dong
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Xin Su
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China.,School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Yingpeng Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Yunshang Yang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| |
Collapse
|