1
|
Judson RS, Smith D, DeVito M, Wambaugh JF, Wetmore BA, Paul Friedman K, Patlewicz G, Thomas RS, Sayre RR, Olker JH, Degitz S, Padilla S, Harrill JA, Shafer T, Carstens KE. A Comparison of In Vitro Points of Departure with Human Blood Levels for Per- and Polyfluoroalkyl Substances (PFAS). TOXICS 2024; 12:271. [PMID: 38668494 PMCID: PMC11053643 DOI: 10.3390/toxics12040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used, and their fluorinated state contributes to unique uses and stability but also long half-lives in the environment and humans. PFAS have been shown to be toxic, leading to immunosuppression, cancer, and other adverse health outcomes. Only a small fraction of the PFAS in commerce have been evaluated for toxicity using in vivo tests, which leads to a need to prioritize which compounds to examine further. Here, we demonstrate a prioritization approach that combines human biomonitoring data (blood concentrations) with bioactivity data (concentrations at which bioactivity is observed in vitro) for 31 PFAS. The in vitro data are taken from a battery of cell-based assays, mostly run on human cells. The result is a Bioactive Concentration to Blood Concentration Ratio (BCBCR), similar to a margin of exposure (MoE). Chemicals with low BCBCR values could then be prioritized for further risk assessment. Using this method, two of the PFAS, PFOA (Perfluorooctanoic Acid) and PFOS (Perfluorooctane Sulfonic Acid), have BCBCR values < 1 for some populations. An additional 9 PFAS have BCBCR values < 100 for some populations. This study shows a promising approach to screening level risk assessments of compounds such as PFAS that are long-lived in humans and other species.
Collapse
Affiliation(s)
- Richard S. Judson
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.S.); (M.D.); (J.F.W.); (B.A.W.); (K.P.F.); (G.P.); (R.S.T.); (R.R.S.); (J.H.O.); (S.D.); (S.P.); (J.A.H.); (T.S.); (K.E.C.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Culbreth M, Nyffeler J, Willis C, Harrill JA. Optimization of Human Neural Progenitor Cells for an Imaging-Based High-Throughput Phenotypic Profiling Assay for Developmental Neurotoxicity Screening. FRONTIERS IN TOXICOLOGY 2022; 3:803987. [PMID: 35295155 PMCID: PMC8915842 DOI: 10.3389/ftox.2021.803987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Studies in in vivo rodent models have been the accepted approach by regulatory agencies to evaluate potential developmental neurotoxicity (DNT) of chemicals for decades. These studies, however, are inefficient and cannot meet the demand for the thousands of chemicals that need to be assessed for DNT hazard. As such, several in vitro new approach methods (NAMs) have been developed to circumvent limitations of these traditional studies. The DNT NAMs, some of which utilize human-derived cell models, are intended to be employed in a testing battery approach, each focused on a specific neurodevelopmental process. The need for multiple assays, however, to evaluate each process can prolong testing and prioritization of chemicals for more in depth assessments. Therefore, a multi-endpoint higher-throughput approach to assess DNT hazard potential would be of value. Accordingly, we have adapted a high-throughput phenotypic profiling (HTPP) approach for use with human-derived neural progenitor (hNP1) cells. HTPP is a fluorescence-based assay that quantitatively measures alterations in cellular morphology. This approach, however, required optimization of several laboratory procedures prior to chemical screening. First, we had to determine an appropriate cell plating density in 384-well plates. We then had to identify the minimum laminin concentration required for optimal cell growth and attachment. And finally, we had to evaluate whether addition of antibiotics to the culture medium would alter cellular morphology. We selected 6,000 cells/well as an appropriate plating density, 20 µg/ml laminin for optimal cell growth and attachment, and antibiotic addition in the culture medium. After optimizing hNP1 cell culture conditions for HTPP, it was then necessary to select appropriate in-plate assay controls from a reference chemical set. These reference chemicals were previously demonstrated to elicit unique phenotypic profiles in various other cell types. Aphidicolin, bafilomycin A1, berberine chloride, and cucurbitacin I induced robust phenotypic profiles as compared to dimethyl sulfoxide vehicle control in the hNP1 cells, and thus can be employed as in-plate assay controls for subsequent chemical screens. We have optimized HTPP for hNP1 cells, and consequently this approach can now be assessed as a potential NAM for DNT hazard evaluation and results compared to previously developed DNT assays.
Collapse
Affiliation(s)
- Megan Culbreth
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, United States
| | - Johanna Nyffeler
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, United States
- Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Oak Ridge, TN, United States
| | - Clinton Willis
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, United States
| | - Joshua A. Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, United States
| |
Collapse
|
4
|
Kranaster P, Karreman C, Dold JEGA, Krebs A, Funke M, Holzer AK, Klima S, Nyffeler J, Helfrich S, Wittmann V, Leist M. Time and space-resolved quantification of plasma membrane sialylation for measurements of cell function and neurotoxicity. Arch Toxicol 2019; 94:449-467. [PMID: 31828357 DOI: 10.1007/s00204-019-02642-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
While there are many methods to quantify the synthesis, localization, and pool sizes of proteins and DNA during physiological responses and toxicological stress, only few approaches allow following the fate of carbohydrates. One of them is metabolic glycoengineering (MGE), which makes use of chemically modified sugars (CMS) that enter the cellular biosynthesis pathways leading to glycoproteins and glycolipids. The CMS can subsequently be coupled (via bio-orthogonal chemical reactions) to tags that are quantifiable by microscopic imaging. We asked here, whether MGE can be used in a quantitative and time-resolved way to study neuronal glycoprotein synthesis and its impairment. We focused on the detection of sialic acid (Sia), by feeding human neurons the biosynthetic precursor N-acetyl-mannosamine, modified by an azide tag. Using this system, we identified non-toxic conditions that allowed live cell labeling with high spatial and temporal resolution, as well as the quantification of cell surface Sia. Using combinations of immunostaining, chromatography, and western blotting, we quantified the percentage of cellular label incorporation and effects on glycoproteins such as polysialylated neural cell adhesion molecule. A specific imaging algorithm was used to quantify Sia incorporation into neuronal projections, as potential measure of complex cell function in toxicological studies. When various toxicants were studied, we identified a subgroup (mitochondrial respiration inhibitors) that affected neurite glycan levels several hours before any other viability parameter was affected. The MGE-based neurotoxicity assay, thus allowed the identification of subtle impairments of neurochemical function with very high sensitivity.
Collapse
Affiliation(s)
- Petra Kranaster
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany
| | - Christiaan Karreman
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Jeremias E G A Dold
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany.,Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Alice Krebs
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany
| | - Melina Funke
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Anna-Katharina Holzer
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Stefanie Klima
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Kooperatives Promotionskolleg (KPK) InViTe, University of Konstanz, 78457, Konstanz, Germany
| | - Johanna Nyffeler
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Environmental Protection Agency, Durham, NC, USA
| | - Stefan Helfrich
- The Bioimaging Center, University of Konstanz, 78457, Konstanz, Germany.,KNIME GmbH, 78467, Konstanz, Germany
| | - Valentin Wittmann
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany.,Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
5
|
Differential effects of fluoxetine and venlafaxine in the neural embryonic stem cell test (ESTn) revealed by a cell lineage map. Neurotoxicology 2019; 76:1-9. [PMID: 31593710 DOI: 10.1016/j.neuro.2019.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 01/21/2023]
Abstract
There is a need for in vitro tests for the evaluation of chemicals and pharmaceuticals that may cause developmental neurotoxicity (DNT) in humans. The neural embryonic stem cell test (ESTn) is such an in vitro test that mimics early neural differentiation. The aim of this study was to define the biological domain of ESTn based on the expression of selective markers for certain cell types, and to investigate the effects of two antidepressants, fluoxetine (FLX) and venlafaxine (VNX), on neural differentiation. A cell lineage map was made to track neural differentiation and the effects of FLX and VNX in ESTn. Whole transcriptome analysis revealed differentiation from an embryonic stem cell population to a mixed culture of neural progenitors, neurons and neural crest cells 7 days into differentiation. Maturing neurons, astrocytes and oligodendrocytes were present after 13 days. Exposure to FLX or VNX led to different expression patterns between compounds at both time points. On day 7, both compounds upregulated most of the stem cell- and immature neuron markers, but had distinct effects on neural subtype markers. FLX downregulated glycinergic markers and upregulated cholinergic markers, while VNX had the opposite effect. On day 13, FLX and VNX affected their specific therapeutic targets, represented by mainly serotonergic markers by FLX- and dopaminergic and noradrenergic markers in VNX-exposed cultures, as well as oligodendrocyte and glycinergic neuron markers. This proof of concept study shows the added value of assessing DNT in ESTn through a cell lineage map and gives mechanistic insight in the potential neurodevelopmental effects of FLX and VNX. More compounds should be tested to further evaluate the use of the cell lineage map.
Collapse
|