1
|
Robinson RM, Reyes L, Christopher BN, Duncan RM, Burge RA, Siegel J, Nasarre P, Wang P, O'Bryan JP, Hobbs GA, Klauber-DeMore N, Dolloff NG. A High-Affinity Monoclonal Antibody Against the Pancreatic Ductal Adenocarcinoma Target, Anterior Gradient-2 (AGR2/PDIA17). Antibodies (Basel) 2024; 13:101. [PMID: 39727484 DOI: 10.3390/antib13040101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Anterior Gradient-2 (AGR2/PDIA17) is a member of the protein disulfide isomerase (PDI) family of oxidoreductases. AGR2 is up-regulated in several solid tumors, including pancreatic ductal adenocarcinoma (PDAC). Given the dire need for new therapeutic options for PDAC patients, we investigated the expression and function of AGR2 in PDAC and developed a novel series of affinity-matured AGR2-specific single-chain variable fragments (scFvs) and monoclonal antibodies. RESULTS We found that AGR2 was expressed in approximately 90% of PDAC but not normal pancreas biopsies, and the level of AGR2 expression correlated with increasing disease stage. AGR2 expression was inversely related to SMAD4 status in PDAC and colorectal cancer cell models and was secreted from cells into their media. In normal tissues, a high density of AGR2 was detected in the epithelium of cells in the digestive tract but was lacking in most other normal tissue systems. The addition of recombinant AGR2 to cell culture and genetic overexpression of AGR2 increased the adhesion, motility, and invasiveness of both human and mouse PDAC cells. Human phage display library screening led to the discovery of multiple AGR2-specific scFv clones that were affinity-matured to produce monoclonal antibody (MAb) clones with low picomolar binding affinity (S31R/A53F/Y). These high-affinity MAbs inhibited AGR2-mediated cell adhesion, migration, and binding to LYPD3, which is a putative cell surface binding partner of AGR2. CONCLUSIONS Our study provides novel, high-affinity, fully human, anti-AGR2 MAbs that neutralize the pro-tumor effects of extracellular AGR2 in PDAC.
Collapse
Affiliation(s)
- Reeder M Robinson
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Leticia Reyes
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Benjamin N Christopher
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ravyn M Duncan
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rachel A Burge
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Julie Siegel
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick Nasarre
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - John P O'Bryan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - G Aaron Hobbs
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
| | - Nathan G Dolloff
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
- Zucker Institute for Innovation Commercialization, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Development of an inhibiting antibody against equine interleukin 5 to treat insect bite hypersensitivity of horses. Sci Rep 2023; 13:4029. [PMID: 36899044 PMCID: PMC10000358 DOI: 10.1038/s41598-023-31173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Insect bite hypersensitivity (IBH) is the most common allergic skin disease of horses. It is caused by insect bites of the Culicoides spp. which mediate a type I/IVb allergy with strong involvement of eosinophil cells. No specific treatment option is available so far. One concept could be the use of a therapeutic antibody targeting equine interleukin 5, the main activator and regulator of eosinophils. Therefore, antibodies were selected by phage display using the naïve human antibody gene libraries HAL9/10, tested in a cellular in vitro inhibition assay and subjected to an in vitro affinity maturation. In total, 28 antibodies were selected by phage display out of which eleven have been found to be inhibiting in the final format as chimeric immunoglobulin G with equine constant domains. The two most promising candidates were further improved by in vitro affinity maturation up to factor 2.5 regarding their binding activity and up to factor 2.0 regarding their inhibition effect. The final antibody named NOL226-2-D10 showed a strong inhibition of the interleukin 5 binding to its receptor (IC50 = 4 nM). Furthermore, a nanomolar binding activity (EC50 = 8.8 nM), stable behavior and satisfactory producibility were demonstrated. This antibody is an excellent candidate for in vivo studies for the treatment of equine IBH.
Collapse
|
3
|
Langreder N, Schäckermann D, Unkauf T, Schubert M, Frenzel A, Bertoglio F, Hust M. Antibody Affinity and Stability Maturation by Error-Prone PCR. Methods Mol Biol 2023; 2702:395-410. [PMID: 37679631 DOI: 10.1007/978-1-0716-3381-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Human antibodies are the most important class of biologicals, and antibodies - human and nonhuman - are indispensable as research agents and for diagnostic assays. When generating antibodies, they sometimes show the desired specificity profile but lack sufficient affinity for the desired application. In this article, a phage display-based method and protocol to increase the affinity of recombinant antibody fragments is given.The given protocol starts with the construction of a mutated antibody gene library by error-prone PCR. Subsequently, the selection of high-affinity variants is performed by panning on immobilized antigen with washing conditions optimized for off-rate-dependent selection. A screening ELISA protocol to identify antibodies with improved affinity and an additional protocol to select antibodies with improved thermal stability is described.
Collapse
Affiliation(s)
- Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dorina Schäckermann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Wirtschaftsgenossenschaft deutscher Tierärzte eG (WDT), Garbsen, Germany
| | - Tobias Unkauf
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Bayer Consumer Care AG, Basel, Switzerland
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - André Frenzel
- YUMAB GmbH, Science Campus Braunschweig-Süd, Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Choose Life Biotech SA, Bellinzona, Switzerland
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
4
|
Cnudde T, Lakhrif Z, Bourgoin J, Boursin F, Horiot C, Henriquet C, di Tommaso A, Juste MO, Jiacomini IG, Dimier-Poisson I, Pugnière M, Mévélec MN, Aubrey N. Exploration and Modulation of Antibody Fragment Biophysical Properties by Replacing the Framework Region Sequences. Antibodies (Basel) 2020; 9:E9. [PMID: 32326443 PMCID: PMC7344962 DOI: 10.3390/antib9020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
In order to increase the successful development of recombinant antibodies and fragments, it seems fundamental to enhance their expression and/or biophysical properties, such as the thermal, chemical, and pH stabilities. In this study, we employed a method bases on replacing the antibody framework region sequences, in order to promote more particularly single-chain Fragment variable (scFv) product quality. We provide evidence that mutations of the VH- C-C' loop might significantly improve the prokaryote production of well-folded and functional fragments with a production yield multiplied by 27 times. Additional mutations are accountable for an increase in the thermal (+19.6 °C) and chemical (+1.9 M) stabilities have also been identified. Furthermore, the hereby-produced fragments have shown to remain stable at a pH of 2.0, which avoids molecule functional and structural impairments during the purification process. Lastly, this study provides relevant information to the understanding of the relationship between the antibodies amino acid sequences and their respective biophysical properties.
Collapse
Affiliation(s)
- Thomas Cnudde
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Zineb Lakhrif
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Justine Bourgoin
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Fanny Boursin
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Catherine Horiot
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Corinne Henriquet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer, 34090 Montpellier, France
| | - Anne di Tommaso
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | | | - Isabella Gizzi Jiacomini
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba 81530, PR, Brazil
| | | | - Martine Pugnière
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer, 34090 Montpellier, France
| | | | - Nicolas Aubrey
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| |
Collapse
|
5
|
Hepler NK, Cosgrove DJ. Directed
in vitro
evolution of bacterial expansin BsEXLX1 for higher cellulose binding and its consequences for plant cell wall‐loosening activities. FEBS Lett 2019; 593:2545-2555. [DOI: 10.1002/1873-3468.13528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Nathan K. Hepler
- Huck Institutes of the Life Sciences The Pennsylvania State University University Park PA USA
- Department of Biology The Pennsylvania State University University Park PA USA
| | - Daniel J. Cosgrove
- Huck Institutes of the Life Sciences The Pennsylvania State University University Park PA USA
- Department of Biology The Pennsylvania State University University Park PA USA
| |
Collapse
|
6
|
Arlotta KJ, Owen SC. Antibody and antibody derivatives as cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1556. [DOI: 10.1002/wnan.1556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/20/2019] [Accepted: 03/10/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Keith J. Arlotta
- Department of Biomedical Engineering University of Utah Salt Lake City Utah
| | - Shawn C. Owen
- Department of Biomedical Engineering University of Utah Salt Lake City Utah
- Department of Pharmaceutics and Pharmaceutical Chemistry University of Utah Salt Lake City Utah
| |
Collapse
|