1
|
Rad A, Weigl L, Steinecker-Frohnwieser B, Stadlmayr S, Millesi F, Haertinger M, Borger A, Supper P, Semmler L, Wolf S, Naghilou A, Weiss T, Kress HG, Radtke C. Nuclear Magnetic Resonance Treatment Induces ßNGF Release from Schwann Cells and Enhances the Neurite Growth of Dorsal Root Ganglion Neurons In Vitro. Cells 2024; 13:1544. [PMID: 39329728 PMCID: PMC11430304 DOI: 10.3390/cells13181544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
Peripheral nerve regeneration depends on close interaction between neurons and Schwann cells (SCs). After nerve injury, SCs produce growth factors and cytokines that are crucial for axon re-growth. Previous studies revealed the supernatant of SCs exposed to nuclear magnetic resonance therapy (NMRT) treatment to increase survival and neurite formation of rat dorsal root ganglion (DRG) neurons in vitro. The aim of this study was to identify factors involved in transferring the observed NMRT-induced effects to SCs and consequently to DRG neurons. Conditioned media of NMRT-treated (CM NMRT) and untreated SCs (CM CTRL) were tested by beta-nerve growth factor (ßNGF) ELISA and multiplex cytokine panels to profile secreted factors. The expression of nociceptive transient receptor potential vanilloid 1 (TRPV1) channels was assessed and the intracellular calcium response in DRG neurons to high-potassium solution, capsaicin or adenosine triphosphate was measured mimicking noxious stimuli. NMRT induced the secretion of ßNGF and pro-regenerative-signaling factors. Blocking antibody experiments confirmed ßNGF as the main factor responsible for neurotrophic/neuritogenic effects of CM NMRT. The TRPV1 expression or sensitivity to specific stimuli was not altered, whereas the viability of cultured DRG neurons was increased. Positive effects of CM NMRT supernatant on DRG neurons are primarily mediated by increased ßNGF levels.
Collapse
Affiliation(s)
- Anda Rad
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Lukas Weigl
- Clinical Department of Special Anesthesia and Pain Therapy, Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria;
| | | | - Sarah Stadlmayr
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Flavia Millesi
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Maximilian Haertinger
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Anton Borger
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Paul Supper
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Lorenz Semmler
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Sonja Wolf
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Aida Naghilou
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Tamara Weiss
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Hans G. Kress
- Clinical Department of Special Anesthesia and Pain Therapy, Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Hofmanning 214, 8962 Groebming, Austria
| | - Christine Radtke
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| |
Collapse
|
2
|
Direder M, Laggner M, Copic D, Klas K, Bormann D, Schweiger T, Hoetzenecker K, Aigner C, Ankersmit HJ, Mildner M. Transcriptional profiling sheds light on the fibrotic aspects of idiopathic subglottic tracheal stenosis. Front Cell Dev Biol 2024; 12:1380902. [PMID: 39071799 PMCID: PMC11272577 DOI: 10.3389/fcell.2024.1380902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Idiopathic subglottic stenosis (ISGS) is a rare fibrotic disease of the upper trachea with an unknown pathomechanism. It typically affects adult Caucasian female patients, leading to severe airway constrictions caused by progressive scar formation and inflammation with clinical symptoms of dyspnoea, stridor and potential changes to the voice. Endoscopic treatment frequently leads to recurrence, whereas surgical resection and reconstruction provides excellent long-term functional outcome. This study aimed to identify so far unrecognized pathologic aspects of ISGS using single cell RNA sequencing. Our scRNAseq analysis uncovered the cellular composition of the subglottic scar tissue, including the presence of a pathologic, profibrotic fibroblast subtype and the presence of Schwann cells in a profibrotic state. In addition, a pathology-associated increase of plasma cells was identified. Using extended bioinformatics analyses, we decoded pathology-associated changes of factors of the extracellular matrix. Our data identified ongoing fibrotic processes in ISGS and provide novel insights on the contribution of fibroblasts, Schwann cells and plasma cells to the pathogenesis of ISGS. This knowledge could impact the development of novel approaches for diagnosis and therapy of ISGS.
Collapse
Affiliation(s)
- Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
- Department of Orthopedics and Trauma-Surgery, Medical University of Vienna, Vienna, Austria
| | - Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Katharina Klas
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | - Daniel Bormann
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | - Thomas Schweiger
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Stadlmayr S, Peter K, Millesi F, Rad A, Wolf S, Mero S, Zehl M, Mentler A, Gusenbauer C, Konnerth J, Schniepp HC, Lichtenegger H, Naghilou A, Radtke C. Comparative Analysis of Various Spider Silks in Regard to Nerve Regeneration: Material Properties and Schwann Cell Response. Adv Healthc Mater 2024; 13:e2302968. [PMID: 38079208 PMCID: PMC11468126 DOI: 10.1002/adhm.202302968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Peripheral nerve reconstruction through the employment of nerve guidance conduits with Trichonephila dragline silk as a luminal filling has emerged as an outstanding preclinical alternative to avoid nerve autografts. Yet, it remains unknown whether the outcome is similar for silk fibers harvested from other spider species. This study compares the regenerative potential of dragline silk from two orb-weaving spiders, Trichonephila inaurata and Nuctenea umbratica, as well as the silk of the jumping spider Phidippus regius. Proliferation, migration, and transcriptomic state of Schwann cells seeded on these silks are investigated. In addition, fiber morphology, primary protein structure, and mechanical properties are studied. The results demonstrate that the increased velocity of Schwann cells on Phidippus regius fibers can be primarily attributed to the interplay between the silk's primary protein structure and its mechanical properties. Furthermore, the capacity of silk fibers to trigger cells toward a gene expression profile of a myelinating Schwann cell phenotype is shown. The findings for the first time allow an in-depth comparison of the specific cellular response to various native spider silks and a correlation with the fibers' material properties. This knowledge is essential to open up possibilities for targeted manufacturing of synthetic nervous tissue replacement.
Collapse
Affiliation(s)
- Sarah Stadlmayr
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Karolina Peter
- Institute for Physics and Materials ScienceUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Flavia Millesi
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Anda Rad
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
| | - Sonja Wolf
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
| | - Sascha Mero
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
| | - Martin Zehl
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Axel Mentler
- Institute of Soil ResearchUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Claudia Gusenbauer
- Institute of Wood Technology and Renewable MaterialsUniversity of Natural Resources and Life SciencesTulln an der Donau3430Austria
| | - Johannes Konnerth
- Institute of Wood Technology and Renewable MaterialsUniversity of Natural Resources and Life SciencesTulln an der Donau3430Austria
| | | | - Helga Lichtenegger
- Institute for Physics and Materials ScienceUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Aida Naghilou
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Medical Systems Biophysics and BioengineeringLeiden Academic Centre for Drug ResearchLeiden UniversityLeiden2333The Netherlands
| | - Christine Radtke
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
4
|
Aparicio GI, Monje PV. Human Schwann Cells in vitro I. Nerve Tissue Processing, Pre-degeneration, Isolation, and Culturing of Primary Cells. Bio Protoc 2023; 13:e4748. [PMID: 38023787 PMCID: PMC10665635 DOI: 10.21769/bioprotoc.4748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 12/01/2023] Open
Abstract
This paper presents versatile protocols to prepare primary human Schwann cell (hSC) cultures from mature peripheral nervous system tissues, including fascicles from long spinal nerves, nerve roots, and ganglia. This protocol starts with a description of nerve tissue procurement, handling, and dissection to obtain tissue sections suitable for hSC isolation and culturing. A description follows on how to disintegrate the nerve tissue by delayed enzymatic dissociation, plate the initial cell suspensions on a two-dimensional substrate, and culture the primary hSCs. Each section contains detailed procedures, technical notes, and background information to aid investigators in understanding and managing all steps. Some general recommendations are made to optimize the recovery, growth, and purity of the hSC cultures irrespective of the tissue source. These recommendations include: (1) pre-culturing epineurium- and perineurium-free nerve fascicles under conditions of adherence or suspension depending on the size of the explants to facilitate the release of proliferative, in vitro-activated hSCs; (2) plating the initial cell suspensions as individual droplets on a laminin-coated substrate to expedite cell adhesion and thereby increase the recovery of viable cells; and (3) culturing the fascicles (pre-degeneration step) and the cells derived therefrom in mitogen- and serum-supplemented medium to accelerate hSC dedifferentiation and promote mitogenesis before and after tissue dissociation, respectively. The hSC cultures obtained as suggested in this protocol are suitable for assorted basic and translational research applications. With the appropriate adaptations, donor-relevant hSC cultures can be prepared using fresh or postmortem tissue biospecimens of a wide range of types and sizes.
Collapse
Affiliation(s)
- Gabriela I. Aparicio
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Paula V. Monje
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Leisz S, Klause CH, Becker AL, Scheer M, Simmermacher S, Strauss C, Scheller C. Establishment of vestibular schwannoma primary cell cultures obtained from cavitron ultrasonic surgical aspirator tissue material. J Neurosci Methods 2023; 397:109955. [PMID: 37611876 DOI: 10.1016/j.jneumeth.2023.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Vestibular schwannoma (VS) is a benign tumor arising from the Schwann cells of the eighth cranial nerve. The complexity in treatment is associated with unpredictable progression of this tumor. Some of the VS do not alter for years, while others rapidly increase in size. The mechanisms behind size progression are not well studied. Furthermore, despite several studies, there is no pharmacological treatment available for sporadic VS. Therefore, in vitro models are essential tools to study the cellular and molecular processes of VS. In addition, patient-derived cell cultures are important for substance screening to investigate pharmacological approaches in vitro. NEW METHOD This study presents a simple and fast method for culturing VS cells from patient tissue material obtained using a cavitron ultrasonic surgical aspirator (CUSA). In addition, the cells were characterized based on the expression of schwannoma markers, growth properties and screened for fibroblast contamination. RESULT We could show that CUSA obtained material is a suitable resource for isolation of VS primary cultures and enables real time analysis on living cells. COMPARISON WITH EXISTING METHODS To date, only a few protocols are available for culturing VS cells from patient tissue material. A disadvantage of these methods is the relatively large amount of tissue needed to obtain the primary cells, which can be difficult, especially in small VS. By obtaining the cells from the CUSA, there is the possibility to establish a primary culture even with limited material. CONCLUSION This approach could be particularly useful for testing substances that represent candidates for drug therapy of vestibular schwannoma.
Collapse
Affiliation(s)
- Sandra Leisz
- Martin Luther University Halle-Wittenberg, Medical Faculty, Department of Neurosurgery, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Clara Helene Klause
- Martin Luther University Halle-Wittenberg, Medical Faculty, Department of Neurosurgery, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Anna-Louisa Becker
- Martin Luther University Halle-Wittenberg, Medical Faculty, Department of Neurosurgery, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Maximilian Scheer
- Martin Luther University Halle-Wittenberg, Medical Faculty, Department of Neurosurgery, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Sebastian Simmermacher
- Martin Luther University Halle-Wittenberg, Medical Faculty, Department of Neurosurgery, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Christian Strauss
- Martin Luther University Halle-Wittenberg, Medical Faculty, Department of Neurosurgery, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Christian Scheller
- Martin Luther University Halle-Wittenberg, Medical Faculty, Department of Neurosurgery, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Ciotu CI, Kistner K, Kaindl U, Millesi F, Weiss T, Radtke C, Kremer A, Schmidt K, Fischer MJM. Schwann cell stimulation induces functional and structural changes in peripheral nerves. Glia 2023; 71:945-956. [PMID: 36495059 DOI: 10.1002/glia.24316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Signal propagation is the essential function of nerves. Lysophosphatidic acid 18:1 (LPA) allows the selective stimulation of calcium signaling in Schwann cells but not neurons. Here, the time course of slowing and amplitude reduction on compound action potentials due to LPA exposure was observed in myelinated and unmyelinated fibers of the mouse, indicating a clear change of axonal function. Teased nerve fiber imaging showed that Schwann cell activation is also present in axon-attached Schwann cells in freshly isolated peripheral rat nerves. The LPA receptor 1 was primarily localized at the cell extensions in isolated rat Schwann cells, suggesting a role in cell migration. Structural investigation of rat C-fibers demonstrated that LPA leads to an evagination of the axons from their Schwann cells. In A-fibers, the nodes of Ranvier appeared unchanged, but the Schmidt-Lanterman incisures were shortened and myelination reduced. The latter might increase leak current, reducing the potential spread to the next node of Ranvier and explain the changes in conduction velocity. The observed structural changes provide a plausible explanation for the functional changes in myelinated and unmyelinated axons of peripheral nerves and the reported sensory sensations such as itch and pain.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Katrin Kistner
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Kaindl
- Department of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Tamara Weiss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Kremer
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Katy Schmidt
- Department of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Semmler L, Naghilou A, Millesi F, Wolf S, Mann A, Stadlmayr S, Mero S, Ploszczanski L, Greutter L, Woehrer A, Placheta‐Györi E, Vollrath F, Weiss T, Radtke C. Silk-in-Silk Nerve Guidance Conduits Enhance Regeneration in a Rat Sciatic Nerve Injury Model. Adv Healthc Mater 2023; 12:e2203237. [PMID: 36683305 PMCID: PMC11468823 DOI: 10.1002/adhm.202203237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 01/24/2023]
Abstract
Advanced nerve guidance conduits can provide an off-the-shelf alternative to autografts for the rehabilitation of segmental peripheral nerve injuries. In this study, the excellent processing ability of silk fibroin and the outstanding cell adhesion quality of spider dragline silk are combined to generate a silk-in-silk conduit for nerve repair. Fibroin-based silk conduits (SC) are characterized, and Schwann cells are seeded on the conduits and spider silk. Rat sciatic nerve (10 mm) defects are treated with an autograft (A), an empty SC, or a SC filled with longitudinally aligned spider silk fibers (SSC) for 14 weeks. Functional recovery, axonal re-growth, and re-myelination are assessed. The material characterizations determine a porous nature of the conduit. Schwann cells accept the conduit and spider silk as growth substrate. The in vivo results show a significantly faster functional regeneration of the A and SSC group compared to the SC group. In line with the functional results, the histomorphometrical analysis determines a comparable axon density of the A and SSC groups, which is significantly higher than the SC group. These findings demonstrate that the here introduced silk-in-silk nerve conduit achieves a similar regenerative performance as autografts largely due to the favorable guiding properties of spider dragline silk.
Collapse
Affiliation(s)
- Lorenz Semmler
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| | - Aida Naghilou
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| | - Sonja Wolf
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Anda Mann
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Sarah Stadlmayr
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Sascha Mero
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Leon Ploszczanski
- Institute of Physics and Materials ScienceUniversity of Natural Resources and Life SciencesGregor‐Medel‐Straße 33Vienna1180Austria
| | - Lisa Greutter
- Department of NeurologyDivision of Neuropathology and NeurochemistryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Adelheid Woehrer
- Department of NeurologyDivision of Neuropathology and NeurochemistryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Eva Placheta‐Györi
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Fritz Vollrath
- Department of ZoologyUniversity of OxfordMansfield Rd.OxfordOX1 3SZUK
| | - Tamara Weiss
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| |
Collapse
|
8
|
Millesi F, Mero S, Semmler L, Rad A, Stadlmayr S, Borger A, Supper P, Haertinger M, Ploszczanski L, Windberger U, Weiss T, Naghilou A, Radtke C. Systematic Comparison of Commercial Hydrogels Revealed That a Synergy of Laminin and Strain-Stiffening Promotes Directed Migration of Neural Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12678-12695. [PMID: 36876876 PMCID: PMC10020957 DOI: 10.1021/acsami.2c20040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023]
Abstract
Hydrogels have shown potential in replacing damaged nerve tissue, but the ideal hydrogel is yet to be found. In this study, various commercially available hydrogels were compared. Schwann cells, fibroblasts, and dorsal root ganglia neurons were seeded on the hydrogels, and their morphology, viability, proliferation, and migration were examined. Additionally, detailed analyses of the gels' rheological properties and topography were conducted. Our results demonstrate vast differences on cell elongation and directed migration on the hydrogels. Laminin was identified as the driver behind cell elongation and in combination with a porous, fibrous, and strain-stiffening matrix structure responsible for oriented cell motility. This study improves our understanding of cell-matrix interactions and thereby facilitates tailored fabrication of hydrogels in the future.
Collapse
Affiliation(s)
- Flavia Millesi
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Sascha Mero
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Lorenz Semmler
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Anda Rad
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Sarah Stadlmayr
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Anton Borger
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Paul Supper
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Maximilian Haertinger
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Leon Ploszczanski
- Institute
for Physics and Materials Science, University
of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Ursula Windberger
- Decentralized
Biomedical Facilities, Core Unit Laboratory Animal Breeding and Husbandry, Medical University Vienna, Vienna 1090, Austria
| | - Tamara Weiss
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Aida Naghilou
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
- Department
of Physical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christine Radtke
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
- Department
of Plastic, Reconstructive
and Aesthetic Surgery, Medical University
of Vienna, Vienna 1090, Austria
| |
Collapse
|
9
|
Berner J, Weiss T, Sorger H, Rifatbegovic F, Kauer M, Windhager R, Dohnal A, Ambros PF, Ambros IM, Boztug K, Steinberger P, Taschner‐Mandl S. Human repair-related Schwann cells adopt functions of antigen-presenting cells in vitro. Glia 2022; 70:2361-2377. [PMID: 36054432 PMCID: PMC9804420 DOI: 10.1002/glia.24257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
The plastic potential of Schwann cells (SCs) is increasingly recognized to play a role after nerve injury and in diseases of the peripheral nervous system. Reports on the interaction between immune cells and SCs indicate their involvement in inflammatory processes. However, the immunocompetence of human SCs has been primarily deduced from neuropathies, but whether after nerve injury SCs directly regulate an adaptive immune response is unknown. Here, we performed comprehensive analysis of immunomodulatory capacities of human repair-related SCs (hrSCs), which recapitulate SC response to nerve injury in vitro. We used our well-established culture model of primary hrSCs from human peripheral nerves and analyzed the transcriptome, secretome, and cell surface proteins for pathways and markers relevant in innate and adaptive immunity, performed phagocytosis assays, and monitored T-cell subset activation in allogeneic co-cultures. Our findings show that hrSCs are phagocytic, which is in line with high MHCII expression. Furthermore, hrSCs express co-regulatory proteins, such as CD40, CD80, B7H3, CD58, CD86, and HVEM, release a plethora of chemoattractants, matrix remodeling proteins and pro- as well as anti-inflammatory cytokines, and upregulate the T-cell inhibiting PD-L1 molecule upon pro-inflammatory stimulation with IFNγ. In contrast to monocytes, hrSC alone are not sufficient to trigger allogenic CD4+ and CD8+ T-cells, but limit number and activation status of exogenously activated T-cells. This study demonstrates that hrSCs possess features and functions typical for professional antigen-presenting cells in vitro, and suggest a new role of these cells as negative regulators of T-cell immunity during nerve regeneration.
Collapse
Affiliation(s)
- Jakob Berner
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- St. Anna Children's HospitalViennaAustria
| | - Tamara Weiss
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of Vienna
| | - Helena Sorger
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | | | - Max Kauer
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Reinhard Windhager
- Department of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Alexander Dohnal
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Peter F. Ambros
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Inge M. Ambros
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- St. Anna Children's HospitalViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI‐RUD)ViennaAustria
- Center for Molecular Medicine (CeMM)ViennaAustria
| | | | | |
Collapse
|
10
|
The transcriptional profile of keloidal Schwann cells. Exp Mol Med 2022; 54:1886-1900. [PMID: 36333467 PMCID: PMC9722693 DOI: 10.1038/s12276-022-00874-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022] Open
Abstract
Recently, a specific Schwann cell type with profibrotic and tissue regenerative properties that contributes to keloid formation has been identified. In the present study, we reanalyzed published single-cell RNA sequencing (scRNA-seq) studies of keloids, healthy skin, and normal scars to reliably determine the specific gene expression profile of keloid-specific Schwann cell types in more detail. We were able to confirm the presence of the repair-like, profibrotic Schwann cell type in the datasets of all three studies and identified a specific gene-set for these Schwann cells. In contrast to keloids, in normal scars, the number of Schwann cells was not increased, nor was their gene expression profile distinctly different from that of Schwann cells of normal skin. In addition, our bioinformatics analysis provided evidence for a role of transcription factors of the AP1, STAT, and KLF families, and members of the IER genes in the dedifferentiation process of keloidal Schwann cells. Together, our analysis strengthens the role of the profibrotic Schwann cell type in the formation of keloids. Knowledge of the exact gene expression profile of these Schwann cells will facilitate their identification in other organs and diseases.
Collapse
|
11
|
Hromada C, Hartmann J, Oesterreicher J, Stoiber A, Daerr A, Schädl B, Priglinger E, Teuschl-Woller AH, Holnthoner W, Heinzel J, Hercher D. Occurrence of Lymphangiogenesis in Peripheral Nerve Autografts Contrasts Schwann Cell-Induced Apoptosis of Lymphatic Endothelial Cells In Vitro. Biomolecules 2022; 12:820. [PMID: 35740945 PMCID: PMC9221261 DOI: 10.3390/biom12060820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Peripheral nerve injuries pose a major clinical concern world-wide, and functional recovery after segmental peripheral nerve injury is often unsatisfactory, even in cases of autografting. Although it is well established that angiogenesis plays a pivotal role during nerve regeneration, the influence of lymphangiogenesis is strongly under-investigated. In this study, we analyzed the presence of lymphatic vasculature in healthy and regenerated murine peripheral nerves, revealing that nerve autografts contained increased numbers of lymphatic vessels after segmental damage. This led us to elucidate the interaction between lymphatic endothelial cells (LECs) and Schwann cells (SCs) in vitro. We show that SC and LEC secretomes did not influence the respective other cell types' migration and proliferation in 2D scratch assay experiments. Furthermore, we successfully created lymphatic microvascular structures in SC-embedded 3D fibrin hydrogels, in the presence of supporting cells; whereas SCs seemed to exert anti-lymphangiogenic effects when cultured with LECs alone. Here, we describe, for the first time, increased lymphangiogenesis after peripheral nerve injury and repair. Furthermore, our findings indicate a potential lymph-repellent property of SCs, thereby providing a possible explanation for the lack of lymphatic vessels in the healthy endoneurium. Our results highlight the importance of elucidating the molecular mechanisms of SC-LEC interaction.
Collapse
Affiliation(s)
- Carina Hromada
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; (C.H.); (A.D.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
| | - Jaana Hartmann
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Johannes Oesterreicher
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Anton Stoiber
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Anna Daerr
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; (C.H.); (A.D.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
| | - Barbara Schädl
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
- University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Eleni Priglinger
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Andreas H. Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; (C.H.); (A.D.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
| | - Wolfgang Holnthoner
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Johannes Heinzel
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, 72076 Tuebingen, Germany
| | - David Hercher
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| |
Collapse
|
12
|
Mann A, Steinecker-Frohnwieser B, Naghilou A, Millesi F, Supper P, Semmler L, Wolf S, Marinova L, Weigl L, Weiss T, Radtke C. Nuclear Magnetic Resonance Treatment Accelerates the Regeneration of Dorsal Root Ganglion Neurons in vitro. Front Cell Neurosci 2022; 16:859545. [PMID: 35418835 PMCID: PMC8995532 DOI: 10.3389/fncel.2022.859545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Abstract
Functional recovery from peripheral nerve injuries depends on a multitude of factors. Schwann cells (SCs) are key players in the regenerative process as they develop repair-specific functions to promote axon regrowth. However, chronically denervated SCs lose their repair phenotype, which is considered as a main reason for regeneration failure. Previous studies reported a modulatory effect of low nuclear magnetic resonance therapy (NMRT) on cell proliferation and gene expression. To provide first insight into a possible effect of NMRT on cells involved in peripheral nerve regeneration, this study investigated whether NMRT is able to influence the cellular behavior of primary SC and dorsal root ganglion (DRG) neuron cultures in vitro. The effect of NMRT on rat SCs was evaluated by comparing the morphology, purity, proliferation rate, and expression levels of (repair) SC associated genes between NMRT treated and untreated SC cultures. In addition, the influence of (1) NMRT and (2) medium obtained from NMRT treated SC cultures on rat DRG neuron regeneration was examined by analyzing neurite outgrowth and the neuronal differentiation status. Our results showed that NMRT stimulated the proliferation of SCs without changing their morphology, purity, or expression of (repair) SC associated markers. Furthermore, NMRT promoted DRG neuron regeneration shown by an increased cell survival, enhanced neurite network formation, and progressed neuronal differentiation status. Furthermore, the medium of NMRT treated SC cultures was sufficient to support DRG neuron survival and neurite outgrowth. These findings demonstrate a beneficial impact of NMRT on DRG neuron survival and neurite formation, which is primarily mediated via SC stimulation. Our data suggest that NMRT could be suitable as a non-invasive auxiliary treatment option for peripheral nerve injuries and encourage future studies that investigate the effect of NMRT in a physiological context.
Collapse
Affiliation(s)
- Anda Mann
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Aida Naghilou
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Paul Supper
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Lorenz Semmler
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Sonja Wolf
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Lena Marinova
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Lukas Weigl
- Department of Special Anesthesia and Pain Therapy, Medical University of Vienna, Vienna, Austria
| | - Tamara Weiss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- *Correspondence: Tamara Weiss,
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
13
|
Goluba K, Kunrade L, Riekstina U, Parfejevs V. Schwann Cells in Digestive System Disorders. Cells 2022; 11:832. [PMID: 35269454 PMCID: PMC8908985 DOI: 10.3390/cells11050832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS), while the extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS. Glial cells are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of ENS glia in health and disease. In this review, we shift the focus a bit and discuss the functions of Schwann cells (SCs), the glial cells of the extrinsic innervation of the digestive system. For more context, we also provide information on the basic findings regarding the function of innervation in disorders of the digestive organs. We find diverse SC roles described particularly in the mouth, the pancreas, and the intestine. We note that most of the scientific evidence concerns the involvement of SCs in cancer progression and pain, but some research identifies stem cell functions and potential for regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, LV-1004 Riga, Latvia; (K.G.); (L.K.); (U.R.)
| |
Collapse
|
14
|
Augmenting Peripheral Nerve Regeneration with Adipose-Derived Stem Cells. Stem Cell Rev Rep 2022; 18:544-558. [PMID: 34417730 PMCID: PMC8858329 DOI: 10.1007/s12015-021-10236-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 02/03/2023]
Abstract
Peripheral nerve injuries (PNIs) are common and debilitating, cause significant health care costs for society, and rely predominately on autografts, which necessitate grafting a nerve section non-locally to repair the nerve injury. One possible approach to improving treatment is bolstering endogenous regenerative mechanisms or bioengineering new nervous tissue in the peripheral nervous system. In this review, we discuss critical-sized nerve gaps and nerve regeneration in rats, and summarize the roles of adipose-derived stem cells (ADSCs) in the treatment of PNIs. Several regenerative treatment modalities for PNI are described: ADSCs differentiating into Schwann cells (SCs), ADSCs secreting growth factors to promote peripheral nerve growth, ADSCs promoting myelination growth, and ADSCs treatments with scaffolds. ADSCs' roles in regenerative treatment and features are compared to mesenchymal stem cells, and the administration routes, cell dosages, and cell fates are discussed. ADSCs secrete neurotrophic factors and exosomes and can differentiate into Schwann cell-like cells (SCLCs) that share features with naturally occurring SCs, including the ability to promote nerve regeneration in the PNS. Future clinical applications are also discussed.
Collapse
|
15
|
Schwann cell plasticity regulates neuroblastic tumor cell differentiation via epidermal growth factor-like protein 8. Nat Commun 2021; 12:1624. [PMID: 33712610 PMCID: PMC7954855 DOI: 10.1038/s41467-021-21859-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Adult Schwann cells (SCs) possess an inherent plastic potential. This plasticity allows SCs to acquire repair-specific functions essential for peripheral nerve regeneration. Here, we investigate whether stromal SCs in benign-behaving peripheral neuroblastic tumors adopt a similar cellular state. We profile ganglioneuromas and neuroblastomas, rich and poor in SC stroma, respectively, and peripheral nerves after injury, rich in repair SCs. Indeed, stromal SCs in ganglioneuromas and repair SCs share the expression of nerve repair-associated genes. Neuroblastoma cells, derived from aggressive tumors, respond to primary repair-related SCs and their secretome with increased neuronal differentiation and reduced proliferation. Within the pool of secreted stromal and repair SC factors, we identify EGFL8, a matricellular protein with so far undescribed function, to act as neuritogen and to rewire cellular signaling by activating kinases involved in neurogenesis. In summary, we report that human SCs undergo a similar adaptive response in two patho-physiologically distinct situations, peripheral nerve injury and tumor development.
Collapse
|
16
|
Millesi F, Weiss T, Mann A, Haertinger M, Semmler L, Supper P, Pils D, Naghilou A, Radtke C. Defining the regenerative effects of native spider silk fibers on primary Schwann cells, sensory neurons, and nerve-associated fibroblasts. FASEB J 2021; 35:e21196. [PMID: 33210360 PMCID: PMC7894153 DOI: 10.1096/fj.202001447r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023]
Abstract
The search for a suitable material to promote regeneration after long-distance peripheral nerve defects turned the spotlight on spider silk. Nerve conduits enriched with native spider silk fibers as internal guiding structures previously demonstrated a regenerative outcome similar to autologous nerve grafts in animal studies. Nevertheless, spider silk is a natural material with associated limitations for clinical use. A promising alternative is the production of recombinant silk fibers that should mimic the outstanding properties of their native counterpart. However, in vitro data on the regenerative features that native silk fibers provide for cells involved in nerve regeneration are scarce. Thus, there is a lack of reference parameters to evaluate whether recombinant silk fiber candidates will be eligible for nerve repair in vivo. To gain insight into the regenerative effect of native spider silk, our study aims to define the behavioral response of primary Schwann cells (SCs), nerve-associated fibroblasts (FBs), and dorsal root ganglion (DRG) neurons cultured on native dragline silk from the genus Nephila and on laminin coated dishes. The established multi-color immunostaining panels together with confocal microscopy and live cell imaging enabled the analysis of cell identity, morphology, proliferation, and migration on both substrates in detail. Our findings demonstrated that native spider silk rivals laminin coating as it allowed attachment and proliferation and supported the characteristic behavior of all tested cell types. Axonal out-growth of DRG neurons occurred along longitudinally aligned SCs that formed sustained bundled structures resembling Bungner bands present in regenerating nerves. The migration of SCs along the silk fibers achieved the reported distance of regenerating axons of about 1 mm per day, but lacked directionality. Furthermore, rFBs significantly reduced the velocity of rSCs in co-cultures on silk fibers. In summary, this study (a) reveals features recombinant silk must possess and what modifications or combinations could be useful for enhanced nerve repair and (b) provides assays to evaluate the regenerative performance of silk fibers in vitro before being applied as internal guiding structure in nerve conduits in vivo.
Collapse
Affiliation(s)
- Flavia Millesi
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Tamara Weiss
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Anda Mann
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Maximilian Haertinger
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Lorenz Semmler
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Paul Supper
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Dietmar Pils
- Division of General SurgeryDepartment of SurgeryComprehensive Cancer Center ViennaMedical University of ViennaViennaAustria
| | - Aida Naghilou
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Christine Radtke
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| |
Collapse
|
17
|
Huang Z, Powell R, Phillips JB, Haastert-Talini K. Perspective on Schwann Cells Derived from Induced Pluripotent Stem Cells in Peripheral Nerve Tissue Engineering. Cells 2020; 9:E2497. [PMID: 33213068 PMCID: PMC7698557 DOI: 10.3390/cells9112497] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Schwann cells play a crucial role in successful peripheral nerve repair and regeneration by supporting both axonal growth and myelination. Schwann cells are therefore a feasible option for cell therapy treatment of peripheral nerve injury. However, sourcing human Schwann cells at quantities required for development beyond research is challenging. Due to their availability, rapid in vitro expansion, survival, and integration within the host tissue, stem cells have attracted considerable attention as candidate cell therapies. Among them, induced pluripotent stem cells (iPSCs) with the associated prospects for personalized treatment are a promising therapy to take the leap from bench to bedside. In this critical review, we firstly focus on the current knowledge of the Schwann cell phenotype in regard to peripheral nerve injury, including crosstalk with the immune system during peripheral nerve regeneration. Then, we review iPSC to Schwann cell derivation protocols and the results from recent in vitro and in vivo studies. We finally conclude with some prospects for the use of iPSCs in clinical settings.
Collapse
Affiliation(s)
- Zhong Huang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30623 Hannover, Germany;
- Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany
| | - Rebecca Powell
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK;
- UCL Centre for Nerve Engineering, University College London, London WC1E 6BT, UK
| | - James B. Phillips
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK;
- UCL Centre for Nerve Engineering, University College London, London WC1E 6BT, UK
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30623 Hannover, Germany;
- Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany
| |
Collapse
|
18
|
Correlating the secondary protein structure of natural spider silk with its guiding properties for Schwann cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111219. [DOI: 10.1016/j.msec.2020.111219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
|
19
|
Peng K, Sant D, Andersen N, Silvera R, Camarena V, Piñero G, Graham R, Khan A, Xu XM, Wang G, Monje PV. Magnetic separation of peripheral nerve-resident cells underscores key molecular features of human Schwann cells and fibroblasts: an immunochemical and transcriptomics approach. Sci Rep 2020; 10:18433. [PMID: 33116158 PMCID: PMC7595160 DOI: 10.1038/s41598-020-74128-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Nerve-derived human Schwann cell (SC) cultures are irreplaceable models for basic and translational research but their use can be limited due to the risk of fibroblast overgrowth. Fibroblasts are an ill-defined population consisting of highly proliferative cells that, contrary to human SCs, do not undergo senescence in culture. We initiated this study by performing an exhaustive immunological and functional characterization of adult nerve-derived human SCs and fibroblasts to reveal their properties and optimize a protocol of magnetic-activated cell sorting (MACS) to separate them effectively both as viable and biologically competent cells. We next used immunofluorescence microscopy imaging, flow cytometry analysis and next generation RNA sequencing (RNA-seq) to unambiguously characterize the post-MACS cell products. High resolution transcriptome profiling revealed the identity of key lineage-specific transcripts and the clearly distinct neural crest and mesenchymal origin of human SCs and fibroblasts, respectively. Our analysis underscored a progenitor- or stem cell-like molecular phenotype in SCs and fibroblasts and the heterogeneity of the fibroblast populations. In addition, pathway analysis of RNA-seq data highlighted putative bidirectional networks of fibroblast-to-SC signaling that predict a complementary, yet seemingly independent contribution of SCs and fibroblasts to nerve regeneration. In sum, combining MACS with immunochemical and transcriptomics approaches provides an ideal workflow to exhaustively assess the identity, the stage of differentiation and functional features of highly purified cells from human peripheral nerve tissues.
Collapse
Affiliation(s)
- Kaiwen Peng
- Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - David Sant
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- University of Utah, Salt Lake City, UT, USA
| | - Natalia Andersen
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Risset Silvera
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vladimir Camarena
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gonzalo Piñero
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Facultad de Farmacia Y Bioquímica, Departamento de Química Biológica, and CONICET, Instituto de Química Y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Regina Graham
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xiao-Ming Xu
- Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gaofeng Wang
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paula V Monje
- Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
20
|
Weiss T, Semmler L, Millesi F, Mann A, Haertinger M, Salzmann M, Radtke C. Automated image analysis of stained cytospins to quantify Schwann cell purity and proliferation. PLoS One 2020; 15:e0233647. [PMID: 32442229 PMCID: PMC7244157 DOI: 10.1371/journal.pone.0233647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/10/2020] [Indexed: 11/18/2022] Open
Abstract
In response to injury, adult Schwann cells (SCs) re-enter the cell cycle, change their expression profile, and exert repair functions important for wound healing and the re-growth of axons. While this phenotypical instability of SCs is essential for nerve regeneration, it has also been implicated in cancer progression and de-myelinating neuropathies. Thus, SCs became an important research tool to study the molecular mechanisms involved in repair and disease and to identify targets for therapeutic intervention. A high purity of isolated SC cultures used for experimentation must be demonstrated to exclude that novel findings are derived from a contaminating fibroblasts population. In addition, information about the SC proliferation status is an important parameter to be determined in response to different treatments. The evaluation of SC purity and proliferation, however, usually depends on the time consuming, manual assessment of immunofluorescence stainings or comes with the sacrifice of a large amount of SCs for flow cytometry analysis. We here show that rat SC culture derived cytospins stained for SC marker SOX10, proliferation marker EdU, intermediate filament vimentin and DAPI allowed the determination of SC identity and proliferation by requiring only a small number of cells. Furthermore, the CellProfiler software was used to develop an automated image analysis pipeline that quantified SCs and proliferating SCs from the obtained immunofluorescence images. By comparing the results of total cell count, SC purity and SC proliferation rate between manual counting and the CellProfiler output, we demonstrated applicability and reliability of the established pipeline. In conclusion, we here combined the cytospin technique, a multi-colour immunofluorescence staining panel, and an automated image analysis pipeline to enable the quantification of SC purity and SC proliferation from small cell aliquots. This procedure represents a solid read-out to simplify and standardize the quantification of primary SC culture purity and proliferation.
Collapse
Affiliation(s)
- Tamara Weiss
- Research Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Lorenz Semmler
- Research Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Flavia Millesi
- Research Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Anda Mann
- Research Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Maximilian Haertinger
- Research Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Research Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Adipose Stem Cell-Derived Extracellular Vesicles Induce Proliferation of Schwann Cells via Internalization. Cells 2020; 9:cells9010163. [PMID: 31936601 PMCID: PMC7016740 DOI: 10.3390/cells9010163] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Recent studies showed a beneficial effect of adipose stem cell-derived extracellular vesicles (ADSC-EVs) on sciatic nerve repair, presumably through Schwann cell (SC) modulation. However, it has not yet been elucidated whether ADSC-EVs exert this supportive effect on SCs by extracellular receptor binding, fusion to the SC membrane, or endocytosis mediated internalization. ADSCs, ADSC-EVs, and SCs were isolated from rats and characterized according to associated marker expression and properties. The proliferation rate of SCs in response to ADSC-EVs was determined using a multicolor immunofluorescence staining panel followed by automated image analysis. SCs treated with ADSC-EVs and silica beads were further investigated by 3-D high resolution confocal microscopy and live cell imaging. Our findings demonstrated that ADSC-EVs significantly enhanced the proliferation of SCs in a time- and dose-dependent manner. 3-D image analysis revealed a perinuclear location of ADSC-EVs and their accumulation in vesicular-like structures within the SC cytoplasm. Upon comparing intracellular localization patterns of silica beads and ADSC-EVs in SCs, we found striking resemblance in size and distribution. Live cell imaging visualized that the uptake of ADSC-EVs preferentially took place at the SC processes from which the EVs were transported towards the nucleus. This study provided first evidence for an endocytosis mediated internalization of ADSC-EVs by SCs and underlines the therapeutic potential of ADSC-EVs in future approaches for nerve regeneration.
Collapse
|