1
|
Gong Q, Wang C, Fan W, Li S, Zhang H, Huang Z, Liu X, Ma Z, Wang Y, Zhang B. RsRbohD1 Plays a Significant Role in ROS Production during Radish Pithiness Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1386. [PMID: 38794456 PMCID: PMC11125187 DOI: 10.3390/plants13101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Pithiness is one of the physiological diseases of radishes, which is accompanied by the accumulation of reactive oxygen species (ROS) during the sponging of parenchyma tissue in the fleshy roots. A respiratory burst oxidase homolog (Rboh, also known as NADPH oxidase) is a key enzyme that catalyzes the production of ROS in plants. To understand the role of Rboh genes in radish pithiness, herein, 10 RsRboh gene families were identified in the genome of Raphanus sativus using Blastp and Hmmer searching methods and were subjected to basic functional analyses such as phylogenetic tree construction, chromosomal localization, conserved structural domain analysis, and promoter element prediction. The expression profiles of RsRbohs in five stages (Pithiness grade = 0, 1, 2, 3, 4, respectively) of radish pithiness were analyzed. The results showed that 10 RsRbohs expressed different levels during the development of radish pithiness. Except for RsRbohB and RsRbohE, the expression of other members increased and reached the peak at the P2 (Pithiness grade = 2) stage, among which RsRbohD1 showed the highest transcripts. Then, the expression of 40 genes related to RsRbohD1 and pithiness were analyzed. These results can provide a theoretical basis for improving pithiness tolerance in radishes.
Collapse
Affiliation(s)
- Qiong Gong
- College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China; (Q.G.); (S.L.)
| | - Chaonan Wang
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| | - Weiqiang Fan
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
- Tianjin Kernel Agricultural Science and Technology Co., Ltd., Vegetable Research Institute, Tianjin 300381, China
| | - Shuiling Li
- College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China; (Q.G.); (S.L.)
| | - Hong Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
- Tianjin Kernel Agricultural Science and Technology Co., Ltd., Vegetable Research Institute, Tianjin 300381, China
| | - Zhiyin Huang
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| | - Xiaohui Liu
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| | - Ziyun Ma
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China;
| | - Yong Wang
- College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China; (Q.G.); (S.L.)
| | - Bin Zhang
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| |
Collapse
|
2
|
The CRK5 and WRKY53 Are Conditional Regulators of Senescence and Stomatal Conductance in Arabidopsis. Cells 2022; 11:cells11223558. [PMID: 36428987 PMCID: PMC9688832 DOI: 10.3390/cells11223558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
In Arabidopsis thaliana, cysteine-rich receptor-like kinases (CRKs) constitute a large group of membrane-localized proteins which perceive external stimuli and transduce the signal into the cell. Previous reports based on their loss-of-function phenotypes and expression profile support their role in many developmental and stress-responsive pathways. Our study revealed that one member of this family, CRK5, acts as a negative regulator of leaf aging. Enrichment of the CRK5 promoter region in W-box cis-elements demonstrated that WRKY transcription factors control it. We observed significantly enhanced WRKY53 expression in crk5 and reversion of its early-senescence phenotype in the crk5 wrky53 line, suggesting a negative feedback loop between these proteins antagonistically regulating chlorophyll a and b contents. Yeast-two hybrid assay showed further that CRK5 interacts with several proteins involved in response to water deprivation or calcium signaling, while gas exchange analysis revealed a positive effect of CRK5 on water use efficiency. Consistent with that, the crk5 plants showed disturbed foliar temperature, stomatal conductance, transpiration, and increased susceptibility to osmotic stress. These traits were fully or partially reverted to wild-type phenotype in crk5 wrky53 double mutant. Obtained results suggest that WRKY53 and CRK5 are antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
Collapse
|
3
|
Liu D, Pei Y. The secret of H 2 S to keep plants young and fresh and its products. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:587-593. [PMID: 34921509 DOI: 10.1111/plb.13377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Recently, accumulating evidence has shown that hydrogen sulphide (H2 S), a newly determined gasotransmitter, plays important roles in senescence, which is an essential biological process for plant fitness and an important agricultural trait that is critical for the yield and quality of farm produce. Here, in this review, we summarize the roles of H2 S in senescence, both before and after the harvesting of agricultural products, and the underlying mechanism is also discussed. During the plant growth process, the function of H2 S in the leaf senescence process has been studied extensively, and H2 S plays roles during the whole process, including the initiation, reorganization and terminal stages. While during the postharvest stage, H2 S can prevents farm products from deterioration resulting from over-ripening, pathogen attack and incorrect storage. The underlying H2 S-related mechanisms during different stages of the senescence process are summarized and compared. The most prominent interaction occurs between H2 S and reactive oxygen species, and the molecular mechanism is explored. Additionally, the conserved action mode of H2 S in different life processes and different species is also discussed. In the future, multi-omics analyses over time will be needed to investigate the detailed mechanisms of H2 S, and a safety attribute analysis of H2 S is also required before it can be used in agricultural production.
Collapse
Affiliation(s)
- D Liu
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| | - Y Pei
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| |
Collapse
|
4
|
Cheng G, Wang M, Zhang L, Wei H, Wang H, Lu J, Yu S. Overexpression of a Cotton Aquaporin Gene GhTIP1;1-like Confers Cold Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms23031361. [PMID: 35163287 PMCID: PMC8836057 DOI: 10.3390/ijms23031361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 11/21/2022] Open
Abstract
Cold stress can significantly affect the development, yield, and quality of crops and restrict the geographical distribution and growing seasons of plants. Aquaporins are the main channels for water transport in plant cells. Abiotic stresses such as cold and drought dehydrate cells by changing the water potential. In this study, we cloned a gene GhTIP1;1-like encodes tonoplast aquaporin from the transcriptome database of cotton seedlings after cold stress. Expression analysis showed that GhTIP1;1-like not only responds to cold stress but was also induced by heat, drought and salt stress. Subcellular localization showed that the protein was anchored to the vacuole membrane. Promoter deletion analysis revealed that a MYC motif within the promoter region of GhTIP1;1-like were the core cis-elements in response to low temperature. Virus-induced gene silencing (VIGS) and histochemical staining indicate that GhTIP1;1-like plays a positive role in plant cold tolerance. Overexpression of GhTIP1;1-like in Arabidopsis delayed the senescence process and enhanced the cold tolerance of transgenic plants. Compared with the wild type, the soluble protein concentration and peroxidase activity of the transgenic lines under cold stress were higher, while the malondialdehyde content was lower. In addition, the expression levels of cold-responsive genes were significantly increased in transgenic plants under cold stress. Our results indicate that GhTIP1;1-like could respond to different abiotic stresses and be positively involved in regulating the cold tolerance of cotton.
Collapse
Affiliation(s)
- Gongmin Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (G.C.); (L.Z.); (H.W.); (H.W.); (J.L.)
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China;
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Mengdi Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China;
- School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Longyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (G.C.); (L.Z.); (H.W.); (H.W.); (J.L.)
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (G.C.); (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (G.C.); (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (G.C.); (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (G.C.); (L.Z.); (H.W.); (H.W.); (J.L.)
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: ; Tel.: +86-188-0372-9718
| |
Collapse
|
5
|
Alhasson H, Salama A, Alweis R. The Dangers of Ingesting Antiseptics: Hydrogen Peroxide-Induced Chemical Colitis. Am J Med 2021; 134:206-208. [PMID: 32712142 DOI: 10.1016/j.amjmed.2020.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022]
Affiliation(s)
- Hussam Alhasson
- Department of Internal Medicine, Rochester Regional Health, Unity Hospital, Rochester, NY.
| | - Amr Salama
- Department of Internal Medicine, Rochester Regional Health, Unity Hospital, Rochester, NY
| | - Richard Alweis
- Department of Graduate Medical Education, Rochester Regional Health, Rochester, NY; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Health Sciences, Rochester Institute of Technology, Rochester, NY
| |
Collapse
|