1
|
Crawford AM, Huntsman B, Weng MY, Ponomarenko O, Kiani CD, George SJ, George GN, Pickering IJ. Abridged spectral matrix inversion: parametric fitting of X-ray fluorescence spectra following integrative data reduction. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1881-1890. [PMID: 34738943 PMCID: PMC8570215 DOI: 10.1107/s1600577521008419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Recent improvements in both X-ray detectors and readout speeds have led to a substantial increase in the volume of X-ray fluorescence data being produced at synchrotron facilities. This in turn results in increased challenges associated with processing and fitting such data, both temporally and computationally. Herein an abridging approach is described that both reduces and partially integrates X-ray fluorescence (XRF) data sets to obtain a fivefold total improvement in processing time with negligible decrease in quality of fitting. The approach is demonstrated using linear least-squares matrix inversion on XRF data with strongly overlapping fluorescent peaks. This approach is applicable to any type of linear algebra based fitting algorithm to fit spectra containing overlapping signals wherein the spectra also contain unimportant (non-characteristic) regions which add little (or no) weight to fitted values, e.g. energy regions in XRF spectra that contain little or no peak information.
Collapse
Affiliation(s)
- Andrew M. Crawford
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Ben Huntsman
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Monica Y. Weng
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Olena Ponomarenko
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Cheyenne D. Kiani
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Simon J. George
- Simon Scientific, 2000 Allston Way, Unit 232, Berkeley, CA 94701, USA
| | - Graham N. George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Ingrid J. Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
2
|
Crawford AM, Deb A, Penner-Hahn JE. M-BLANK: a program for the fitting of X-ray fluorescence spectra. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:497-503. [PMID: 30855260 PMCID: PMC6412182 DOI: 10.1107/s1600577519000651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/14/2019] [Indexed: 05/23/2023]
Abstract
The X-ray fluorescence data from X-ray microprobe and nanoprobe measurements must be fitted to obtain reliable elemental maps. The most common approach in many fitting programs is to initially remove a per-pixel baseline. Using X-ray fluorescence data of yeast and glial cells, it is shown that per-pixel baselines can result in significant, systematic errors in quantitation and that significantly improved data can be obtained by calculating an average blank spectrum and subtracting this from each pixel.
Collapse
Affiliation(s)
- Andrew M. Crawford
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
- Department of Geology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| | - James E. Penner-Hahn
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
3
|
Nadeau CA, Dietrich K, Wilkinson CM, Crawford AM, George GN, Nichol HK, Colbourne F. Prolonged Blood-Brain Barrier Injury Occurs After Experimental Intracerebral Hemorrhage and Is Not Acutely Associated with Additional Bleeding. Transl Stroke Res 2018; 10:287-297. [PMID: 29949086 PMCID: PMC6526148 DOI: 10.1007/s12975-018-0636-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 01/27/2023]
Abstract
Intracerebral hemorrhage (ICH) causes blood-brain barrier (BBB) damage along with altered element levels in the brain. BBB permeability was quantified at 3, 7, and 14 days with Evans Blue dye after collagenase-induced ICH in rat. At peak permeability (day 3), a gadolinium (Gd)-based contrast agent was injected to further characterize BBB disruption, and X-ray fluorescence imaging (XFI) was used to map Gd, Fe, Cl, and other elements. XFI revealed that Ca, Cl, Gd, and Fe concentrations were significantly elevated, whereas K was significantly decreased. Therefore, using Gd-XFI, we co-determined BBB dysfunction with alterations in the metallome, including those that contribute to cell death and functional outcome. Warfarin was administered 3 days post-ICH to investigate whether additional or new bleeding occurs during peak BBB dysfunction, and hematoma volume was assessed on day 4. Warfarin administration prolonged bleeding time after a peripheral cut-induced bleed, but warfarin did not worsen hematoma volume. Accordingly, extensive BBB leakage occurred after ICH, but did not appear to affect total hematoma size.
Collapse
Affiliation(s)
- Colby A Nadeau
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Kristen Dietrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Cassandra M Wilkinson
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Andrew M Crawford
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada.,Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| | - Helen K Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | - Frederick Colbourne
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|