1
|
Luo Y, He F, Zhang Y, Li S, Lu R, Wei X, Huang J. Transcription Factor 21: A Transcription Factor That Plays an Important Role in Cardiovascular Disease. Pharmacology 2024; 109:183-193. [PMID: 38493769 DOI: 10.1159/000536585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND According to the World Health Organisation's Health Report 2019, approximately 17.18 million people die from cardiovascular disease each year, accounting for more than 30% of all global deaths. Therefore, the occurrence of cardiovascular disease is still a global concern. The transcription factor 21 (TCF21) plays an important role in cardiovascular diseases. This article reviews the regulation mechanism of TCF21 expression and activity and focuses on its important role in atherosclerosis in order to contribute to the development of diagnosis and treatment of cardiovascular diseases. SUMMARY TCF21 is involved in the phenotypic regulation of vascular smooth muscle cells (VSMCs), promotes the proliferation and migration of VSMCs, and participates in the activation of inflammatory sequences. Increased proliferation and migration of VSMCs can lead to neointimal hyperplasia after vascular injury. Abnormal hyperplasia of neointima and inflammation are one of the main features of atherosclerosis. Therefore, targeting TCF21 may become a potential treatment for relieving atherosclerosis. KEY MESSAGES TCF21 as a member of basic helix-loop-helix transcription factors regulates cell growth and differentiation by modulating gene expression during the development of different organs and plays an important role in cardiovascular development and disease. VSMCs and cells derived from VSMCs constitute the majority of plaques in atherosclerosis. TCF21 plays a key role in regulation of VSMCs' phenotype, thus accelerating atherogenesis in the early stage. However, TCF21 enhances plaque stability in late-stage atherosclerosis. The dual role of TCF21 should be considered in the translational medicine.
Collapse
Affiliation(s)
- Yaqian Luo
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China,
| | - Fangzhou He
- Department of Anaesthesia, Chuanshan College, University of South China, Hengyang, China
| | - Yifang Zhang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Shufan Li
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xing Wei
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Ji Huang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Xu H, Tong G, Yan T, Dong L, Yang X, Dou D, Sun Z, Liu T, Zheng X, Yang J, Sun X, Zhou Y, Kuang Y. Transcriptomic Analysis Provides Insights to Reveal the bmp6 Function Related to the Development of Intermuscular Bones in Zebrafish. Front Cell Dev Biol 2022; 10:821471. [PMID: 35646941 PMCID: PMC9135397 DOI: 10.3389/fcell.2022.821471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Intermuscular bones (IBs) are small, hard-boned spicules located in the muscle tissue that mainly exist in the myosepta of lower teleosts, which hurt the edibleness and economic value of fish. The study of the development of IBs is very important for freshwater aquaculture fish, but the molecular mechanism of its formation and the key regulatory genes remain unclear. In this study, we first constructed two types of zebrafish mutants (the mutants losing IBs and the mutants with partial deletion of IBs) by knocking out bmp6. We then carried out a transcriptomic analysis to reveal the role of bmp6 in the developmental mechanism of IBs; we used the caudal musculoskeletal tissues of these mutants and wild-type zebrafish at three development stages (20, 45, and 60 dph) to perform transcriptomic analysis. The results showed that the deficiency of bmp6 upregulated sik1 and activated the TNF-A signaling via the NF-KB pathway, which inhibited the development of osteoblasts and promoted osteoclast formation, thereby inhibiting the formation of IBs. These results provided insights to understand the role of bmp6 in the development of IBs in zebrafish and are useful for selective breeding of IBs in cyprinids.
Collapse
Affiliation(s)
- Huan Xu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangxiang Tong
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Ting Yan
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Le Dong
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaoxing Yang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Dongyu Dou
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Zhipeng Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Tianqi Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xianhu Zheng
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Jian Yang
- Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
| | - Xiaowen Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yi Zhou
- Stem Cell Program of Boston Children’s Hospital, Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Youyi Kuang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
3
|
Peng X, Mo Y, Liu J, Liu H, Wang S. Identification and Validation of miRNA-TF-mRNA Regulatory Networks in Uterine Fibroids. Front Bioeng Biotechnol 2022; 10:856745. [PMID: 35392402 PMCID: PMC8981149 DOI: 10.3389/fbioe.2022.856745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
Uterine fibroids (UF) are the most common benign gynecologic tumors and lead to heavy menstrual bleeding, severe anemia, abdominal pain, and infertility, which seriously harm a women’s health. Unfortunately, the regulatory mechanisms of UF have not been elucidated. Recent studies have demonstrated that miRNAs play a vital role in the development of uterine fibroids. As a high-throughput technology, microarray is utilized to identify differentially expressed genes (DEGs) and miRNAs (DEMs) between UF and myometrium. We identified 373 candidate DEGs and the top 100 DEMs. Function enrichment analysis showed that candidate DEGs were mainly enriched in biological adhesion, locomotion and cell migration, and collagen-containing extracellular matrix. Subsequently, protein-protein interaction (PPI) networks are constructed to analyze the functional interaction between DEGs and screen hub DEGs. Subsequently, the expression levels of hub DEGs were validated by real-time PCR of clinical UF samples. The DGIdb database was used to select candidate drugs for hub DEGs. Molecular docking was applied to test the affinity between proteins and drugs. Furthermore, target genes for 100 candidate DEMs were predicted by miRwalk3.0. After overlapping with 373 candidate DEGs, 28 differentially expressed target genes (DEGTs) were obtained. A miRNA-mRNA network was constructed to investigate the interactions between miRNA and mRNA. Additionally, two miRNAs (hsa-miR-381-3p and hsa-miR-181b-5p) were identified as hub DEMs and validated through RT-PCR. In order to better elucidate the pathogenesis of UF and the synergistic effect between miRNA and transcription factor (TF), we constructed a miRNA-TF-mRNA regulatory network. Meanwhile, in vitro results suggested that dysregulated hub DEMs were associated with the proliferation, migration, and apoptosis of UF cells. Our findings provided a novel horizon to reveal the internal mechanism and novel targets for the diagnosis and treatment of UF.
Collapse
Affiliation(s)
- Xiaotong Peng
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yanqun Mo
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Junliang Liu
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Huining Liu
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Huining Liu, ; Shuo Wang,
| | - Shuo Wang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Huining Liu, ; Shuo Wang,
| |
Collapse
|
4
|
Boroń D, Zmarzły N, Wierzbik-Strońska M, Rosińczuk J, Mieszczański P, Grabarek BO. Recent Multiomics Approaches in Endometrial Cancer. Int J Mol Sci 2022; 23:ijms23031237. [PMID: 35163161 PMCID: PMC8836055 DOI: 10.3390/ijms23031237] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Endometrial cancer is the most common gynecological cancers in developed countries. Many of the mechanisms involved in its initiation and progression remain unclear. Analysis providing comprehensive data on the genome, transcriptome, proteome, and epigenome could help in selecting molecular markers and targets in endometrial cancer. Multiomics approaches can reveal disturbances in multiple biological systems, giving a broader picture of the problem. However, they provide a large amount of data that require processing and further integration prior to analysis. There are several repositories of multiomics datasets, including endometrial cancer data, as well as portals allowing multiomics data analysis and visualization, including Oncomine, UALCAN, LinkedOmics, and miRDB. Multiomics approaches have also been applied in endometrial cancer research in order to identify novel molecular markers and therapeutic targets. This review describes in detail the latest findings on multiomics approaches in endometrial cancer.
Collapse
Affiliation(s)
- Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland; (N.Z.); (M.W.-S.)
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland
- Correspondence: (D.B.); (B.O.G.)
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland; (N.Z.); (M.W.-S.)
| | - Magdalena Wierzbik-Strońska
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland; (N.Z.); (M.W.-S.)
| | - Joanna Rosińczuk
- Katedra Ošetrovatel’stva, Fakulta Zdravotníckych Odborov, Prešovská Univerzita v Prešove, Partizánska 1, 08001 Prešov, Slovakia;
- Department of Nervous System Diseases, Department of Clinical Nursing, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Paweł Mieszczański
- Hospital of Ministry of Interior and Administration, 40-052 Katowice, Poland;
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland; (N.Z.); (M.W.-S.)
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland
- Correspondence: (D.B.); (B.O.G.)
| |
Collapse
|
5
|
Tesovnik T, Jenko Bizjan B, Šket R, Debeljak M, Battelino T, Kovač J. Technological Approaches in the Analysis of Extracellular Vesicle Nucleotide Sequences. Front Bioeng Biotechnol 2021; 9:787551. [PMID: 35004647 PMCID: PMC8733665 DOI: 10.3389/fbioe.2021.787551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Together with metabolites, proteins, and lipid components, the EV cargo consists of DNA and RNA nucleotide sequence species, which are part of the intracellular communication network regulating specific cellular processes and provoking distinct target cell responses. The extracellular vesicle (EV) nucleotide sequence cargo molecules are often investigated in association with a particular pathology and may provide an insight into the physiological and pathological processes in hard-to-access organs and tissues. The diversity and biological function of EV nucleotide sequences are distinct regarding EV subgroups and differ in tissue- and cell-released EVs. EV DNA is present mainly in apoptotic bodies, while there are different species of EV RNAs in all subgroups of EVs. A limited sample volume of unique human liquid biopsy provides a small amount of EVs with limited isolated DNA and RNA, which can be a challenging factor for EV nucleotide sequence analysis, while the additional difficulty is technical variability of molecular nucleotide detection. Every EV study is challenged with its first step of the EV isolation procedure, which determines the EV's purity, yield, and diameter range and has an impact on the EV's downstream analysis with a significant impact on the final result. The gold standard EV isolation procedure with ultracentrifugation provides a low output and not highly pure isolated EVs, while modern techniques increase EV's yield and purity. Different EV DNA and RNA detection techniques include the PCR procedure for nucleotide sequence replication of the molecules of interest, which can undergo a small-input EV DNA or RNA material. The nucleotide sequence detection approaches with their advantages and disadvantages should be considered to appropriately address the study problem and to extract specific EV nucleotide sequence information with the detection using qPCR or next-generation sequencing. Advanced next-generation sequencing techniques allow the detection of total EV genomic or transcriptomic data even at the single-molecule resolution and thus, offering a sensitive and accurate EV DNA or RNA biomarker detection. Additionally, with the processes where the EV genomic or transcriptomic data profiles are compared to identify characteristic EV differences in specific conditions, novel biomarkers could be discovered. Therefore, a suitable differential expression analysis is crucial to define the EV DNA or RNA differences between conditions under investigation. Further bioinformatics analysis can predict molecular cell targets and identify targeted and affected cellular pathways. The prediction target tools with functional studies are essential to help specify the role of the investigated EV-targeted nucleotide sequences in health and disease and support further development of EV-related therapeutics. This review will discuss the biological diversity of human liquid biopsy-obtained EV nucleotide sequences DNA and RNA species reported as potential biomarkers in health and disease and methodological principles of their detection, from human liquid biopsy EV isolation, EV nucleotide sequence extraction, techniques for their detection, and their cell target prediction.
Collapse
Affiliation(s)
- Tine Tesovnik
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Robert Šket
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Maruša Debeljak
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
- Faculty of Medicine, Chair of Paediatrics, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovač
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| |
Collapse
|
6
|
Zhou W, Li P, Jin P. miR-654-5p promotes gastric cancer progression via the GPRIN1/NF-κB pathway. Open Med (Wars) 2021; 16:1683-1695. [PMID: 34805531 PMCID: PMC8578810 DOI: 10.1515/med-2021-0369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gastric carcinoma (GC) ranks the fifth most common cancer worldwide, with high incidence and mortality rates. Numerous microRNAs (miRNAs), including miR-654-5p, have been implicated in the pathophysiological processes of tumorigenesis. Nevertheless, the mechanism of miR-654-5p in GC is unclear. OBJECTIVES Our study is devoted to exploring the function and molecular mechanism of miR-654-5p on the malignant cell behaviors of GC. METHODS The gene expression was detected by reverse transcription quantitative polymerase chain reaction. GC cell proliferation and motion were assessed by colony formation assay and transwell assay. The binding capacity between miR-654-5p and G protein-regulated inducer of neurite outgrowth 1 (GPRIN1) was explored by luciferase reporter and RNA pulldown assays. The protein levels were detected by Western blotting. RESULTS miR-654-5p expression was higher in GC cells and tissues than control cells and tissues. miR-654-5p promoted GC cell growth and motion. Moreover, our findings showed that miR-654-5p was bound with GPRIN1. Importantly, downregulation of GPRIN1 rescued the inhibitory influence of miR-654-5p knockdown on GC cell malignant behaviors. Additionally, miR-654-5p activated the nuclear factor kappa-B (NF-κB) pathway by regulation of GPRIN1. CONCLUSIONS miR-654-5p facilitated cell proliferation, migration, and invasion in GC via targeting the GPRIN1 to activate the NF-κB pathway.
Collapse
Affiliation(s)
- Weidong Zhou
- Department of Gastroenterology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), 41Xibei Street, Ningbo 315010, Zhejiang, China
| | - Peifei Li
- Department of Gastroenterology, Ningbo First Hospital, Ningbo 315010, Zhejiang, China
| | - Peihua Jin
- Department of Gastroenterology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo 315010, Zhejiang, China
| |
Collapse
|
7
|
Valihrach L, Androvic P, Kubista M. Circulating miRNA analysis for cancer diagnostics and therapy. Mol Aspects Med 2020; 72:100825. [DOI: 10.1016/j.mam.2019.10.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
|