1
|
Martinez NJ, Braisted JC, Dranchak PK, Moran JJ, Larson H, Queme B, Pak E, Dutra A, Rai G, Cheng KCC, Svaren J, Inglese J. Genome-Edited Coincidence and PMP22-HiBiT Fusion Reporter Cell Lines Enable an Artifact-Suppressive Quantitative High-Throughput Screening Strategy for PMP22 Gene-Dosage Disorder Drug Discovery. ACS Pharmacol Transl Sci 2021; 4:1422-1436. [PMID: 34423274 DOI: 10.1021/acsptsci.1c00110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Charcot-Marie-Tooth 1A (CMT1A) is the most common form of hereditary peripheral neuropathies, characterized by genetic duplication of the critical myelin gene Peripheral Myelin Protein 22 (PMP22). PMP22 overexpression results in abnormal Schwann cell differentiation, leading to axonal loss and muscle wasting. Since regulation of PMP22 expression is a major target of therapeutic discovery for CMT1A, we sought to establish unbiased approaches that allow the identification of therapeutic agents for this disease. Using genome editing, we generated a coincidence reporter assay that accurately monitors Pmp22 transcript levels in the S16 rat Schwann cell line, while reducing reporter-based false positives. A quantitative high-throughput screen (qHTS) of 42 577 compounds using this assay revealed diverse novel chemical classes that reduce endogenous Pmp22 transcript levels. Moreover, some of these classes show pharmacological specificity in reducing Pmp22 over another major myelin-associated gene, Mpz (Myelin protein zero). Finally, to investigate whether compound-mediated reduction of Pmp22 transcripts translates to reduced PMP22 protein levels, we edited the S16 genome to generate a reporter assay that expresses a PMP22-HiBiT fusion protein using CRISPR/Cas9. Overall, we present a screening platform that combines genome edited cell lines encoding reporters that monitor transcriptional and post-translational regulation of PMP22 with titration-based screening (e.g., qHTS), which could be efficiently incorporated into drug discovery campaigns for CMT1A.
Collapse
Affiliation(s)
- Natalia J Martinez
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - John C Braisted
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Patricia K Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - John J Moran
- Department of Comparative Biosciences, and Waisman Center, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Hunter Larson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Bryan Queme
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Evgenia Pak
- National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland 20817, United States
| | - Amalia Dutra
- National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland 20817, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ken Chih-Chien Cheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - John Svaren
- Department of Comparative Biosciences, and Waisman Center, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States.,National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland 20817, United States
| |
Collapse
|
2
|
Pantera H, Shy ME, Svaren J. Regulating PMP22 expression as a dosage sensitive neuropathy gene. Brain Res 2019; 1726:146491. [PMID: 31586623 DOI: 10.1016/j.brainres.2019.146491] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Structural variation in the human genome has emerged as a major cause of disease as genomic data have accumulated. One of the most common structural variants associated with human disease causes the heritable neuropathy known as Charcot-Marie-Tooth (CMT) disease type 1A. This 1.4 Mb duplication causes nearly half of the CMT cases that are genetically diagnosed. The PMP22 gene is highly induced in Schwann cells during development, although its precise role in myelin formation and homeostasis is still under active investigation. The PMP22 gene can be considered as a nucleoprotein complex with enzymatic activity to produce the PMP22 transcript, and the complex is allosterically regulated by transcription factors that respond to intracellular signals and epigenomic modifications. The control of PMP22 transcript levels has been one of the major therapeutic targets of therapy development, and this review summarizes those approaches as well as efforts to characterize the regulation of the PMP22 gene.
Collapse
Affiliation(s)
- Harrison Pantera
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|