1
|
Lehmann U. Epigenetic Therapies in Triple-Negative Breast Cancer: Concepts, Visions, and Challenges. Cancers (Basel) 2024; 16:2164. [PMID: 38927870 PMCID: PMC11202282 DOI: 10.3390/cancers16122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer, the most frequent malignancy in women worldwide, is a molecularly and clinically very heterogeneous disease. Triple-negative breast cancer is defined by the absence of hormone receptor and growth factor receptor ERBB2/HER2 expression. It is characterized by a more aggressive course of disease and a shortage of effective therapeutic approaches. Hallmarks of cancer cells are not only genetic alterations, but also epigenetic aberrations. The most studied and best understood alterations are methylation of the DNA base cytosine and the covalent modification of histone proteins. The reversibility of these covalent modifications make them attractive targets for therapeutic intervention, as documented in numerous ongoing clinical trials. Epidrugs, targeting DNA methylation and histone modifications, might offer attractive new options in treating triple-negative breast cancer. Currently, the most promising options are combination therapies in which the epidrug increases the efficiency of immuncheckpoint inhibitors. This review focusses exclusively on DNA methylation and histone modifications. In reviewing the knowledge about epigenetic therapies in breast cancer, and especially triple-negative breast cancer, the focus is on explaining concepts and raising awareness of what is not yet known and what has to be clarified in the future.
Collapse
Affiliation(s)
- Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
2
|
Lu Y, Lee J, Li J, Allu SR, Wang J, Kim H, Bullaughey KL, Fisher SA, Nordgren CE, Rosario JG, Anderson SA, Ulyanova AV, Brem S, Chen HI, Wolf JA, Grady MS, Vinogradov SA, Kim J, Eberwine J. CHEX-seq detects single-cell genomic single-stranded DNA with catalytical potential. Nat Commun 2023; 14:7346. [PMID: 37963886 PMCID: PMC10645931 DOI: 10.1038/s41467-023-43158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Genomic DNA (gDNA) undergoes structural interconversion between single- and double-stranded states during transcription, DNA repair and replication, which is critical for cellular homeostasis. We describe "CHEX-seq" which identifies the single-stranded DNA (ssDNA) in situ in individual cells. CHEX-seq uses 3'-terminal blocked, light-activatable probes to prime the copying of ssDNA into complementary DNA that is sequenced, thereby reporting the genome-wide single-stranded chromatin landscape. CHEX-seq is benchmarked in human K562 cells, and its utilities are demonstrated in cultures of mouse and human brain cells as well as immunostained spatially localized neurons in brain sections. The amount of ssDNA is dynamically regulated in response to perturbation. CHEX-seq also identifies single-stranded regions of mitochondrial DNA in single cells. Surprisingly, CHEX-seq identifies single-stranded loci in mouse and human gDNA that catalyze porphyrin metalation in vitro, suggesting a catalytic activity for genomic ssDNA. We posit that endogenous DNA enzymatic activity is a function of genomic ssDNA.
Collapse
Affiliation(s)
- Youtao Lu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jaehee Lee
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jifen Li
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jinhui Wang
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - HyunBum Kim
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin L Bullaughey
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen A Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - C Erik Nordgren
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean G Rosario
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia, ARC 517, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Alexandra V Ulyanova
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - H Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Sean Grady
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James Eberwine
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Mc Auley MT. DNA methylation in genes associated with the evolution of ageing and disease: A critical review. Ageing Res Rev 2021; 72:101488. [PMID: 34662746 DOI: 10.1016/j.arr.2021.101488] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022]
Abstract
Ageing is characterised by a physical decline in biological functioning which results in a progressive risk of mortality with time. As a biological phenomenon, it is underpinned by the dysregulation of a myriad of complex processes. Recently, however, ever-increasing evidence has associated epigenetic mechanisms, such as DNA methylation (DNAm) with age-onset pathologies, including cancer, cardiovascular disease, and Alzheimer's disease. These diseases compromise healthspan. Consequently, there is a medical imperative to understand the link between epigenetic ageing, and healthspan. Evolutionary theory provides a unique way to gain new insights into epigenetic ageing and health. This review will: (1) provide a brief overview of the main evolutionary theories of ageing; (2) discuss recent genetic evidence which has revealed alleles that have pleiotropic effects on fitness at different ages in humans; (3) consider the effects of DNAm on pleiotropic alleles, which are associated with age related disease; (4) discuss how age related DNAm changes resonate with the mutation accumulation, disposable soma and programmed theories of ageing; (5) discuss how DNAm changes associated with caloric restriction intersect with the evolution of ageing; and (6) conclude by discussing how evolutionary theory can be used to inform investigations which quantify age-related DNAm changes which are linked to age onset pathology.
Collapse
Affiliation(s)
- Mark Tomás Mc Auley
- Faculty of Science and Engineering, University of Chester, Exton Park, Chester CH1 4BJ, UK.
| |
Collapse
|
4
|
Beck D, Ben Maamar M, Skinner MK. Genome-wide CpG density and DNA methylation analysis method (MeDIP, RRBS, and WGBS) comparisons. Epigenetics 2021; 17:518-530. [PMID: 33975521 PMCID: PMC9067529 DOI: 10.1080/15592294.2021.1924970] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Genome-wide DNA methylation analysis is one of the most common epigenetic processes analysed for genome characterization and differential DNA methylation assessment. Previous genome-wide analysis has suggested an important variable in DNA methylation methods involves CpG density. The current study was designed to investigate the CpG density in a variety of different species genomes and correlate this to various DNA methylation analysis data sets. The majority of all genomes had >90% of the genome in the low density 1-3 CpG/100 bp category, while <10% of the genome was in the higher density >5 CpG/100 bp category. Similar observations with human, rat, bird, and fish genomes were observed. The methylated DNA immunoprecipitation (MeDIP) procedure uses the anti-5-methylcytosine antibody immunoprecipitation followed by next-generation sequencing (MeDIP-Seq). The MeDIP procedure is biased to lower CpG density of <5 CpG/100 bp, which corresponds to >95% of the genome. The reduced representation bisulphite (RRBS) protocol generally identifies DMRs in higher CpG density regions of ≥3 CpG/100 bp which corresponds to approximately 20% of the genome. The whole-genome bisulphite (WGBS) analyses resulted in higher CpG densities, often greater than 10 CpG/100bp. WGBS generally identifies ≥2 CpG/100bp, which corresponds to approximately 50% of the genome. Limitations and potential optimization approaches for each method are discussed. None of the procedures can provide complete genome-wide assessment of the genome, but MeDIP-Seq provides coverage of the highest percentage. Observations demonstrate that CpG density is a critical variable in DNA methylation analysis, and different molecular techniques focus on distinct genomic regions.
Collapse
Affiliation(s)
- Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Tang X, Wei Y, Wang J, Chen S, Cai J, Tang J, Xu X, Long B, Yu G, Zhang Z, He M, Qin J. Association between SIRT6 Methylation and Human Longevity in a Chinese Population. Public Health Genomics 2020; 23:190-199. [PMID: 33238266 DOI: 10.1159/000508832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/19/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sirtuin 6 gene (SIRT6) is a longevity gene that is involved in a variety of metabolic pathways, but the relationship between SIRT6 methylation and longevity has not been clarified. METHODS We conducted a case-control study on 129 residents with a family history of longevity (1 of parents, themselves, or siblings aged ≥90 years) and 86 individuals without a family history of exceptional longevity to identify the association. DNA pyrosequencing was performed to analyze the methylation status of SIRT6 promoter CpG sites. qRT-PCR and ELISA were used to estimate the SIRT6 messenger RNA (mRNA) levels and protein content. Six CpG sites (P1-P6) were identified as methylation variable positions in the SIRT6 promoter region. RESULTS At the P2 and P5 CpG sites, the methylation rates of the longevity group were lower than those of the control group (p < 0.001 and p = 0.009), which might be independent determinants of longevity. The mRNA and protein levels of SIRT6 decreased in the control group (p < 0.0001 and p = 0.038). The mRNA level negatively correlated with the methylation rates at the P2 (rs = -0.173, p = 0.011) and P5 sites (rs = -0.207, p = 0.002). Furthermore, the protein content positively correlated with the methylation rate at the P5 site (rs = 0.136, p = 0.046) but showed no significant correlation with the methylation rate at the P2 site. CONCLUSION The low level of SIRT6 methylation may be a potential protective factor of Chinese longevity.
Collapse
Affiliation(s)
- Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China.,Department of General Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yi Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jian Wang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Shiyi Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jiansheng Cai
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jiexia Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xia Xu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Bingshuang Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Guoqi Yu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhiyong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China.,Department of Occupational and Environmental Health, School of Public Health, Guilin Medical University, Guilin, China
| | - Min He
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China,
| | - Jian Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China.,The First People's Hospital of Nanning, Nanning, China
| |
Collapse
|
6
|
Identification of Differentially Methylated CpG Sites in Fibroblasts from Keloid Scars. Biomedicines 2020; 8:biomedicines8070181. [PMID: 32605309 PMCID: PMC7400180 DOI: 10.3390/biomedicines8070181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
As a part of an abnormal healing process of dermal injuries and irritation, keloid scars arise on the skin as benign fibroproliferative tumors. Although the etiology of keloid scarring remains unsettled, considerable recent evidence suggested that keloidogenesis may be driven by epigenetic changes, particularly, DNA methylation. Therefore, genome-wide scanning of methylated cytosine-phosphoguanine (CpG) sites in extracted DNA from 12 keloid scar fibroblasts (KF) and 12 control skin fibroblasts (CF) (six normal skin fibroblasts and six normotrophic fibroblasts) was conducted using the Illumina Human Methylation 450K BeadChip in two replicates for each sample. Comparing KF and CF used a Linear Models for Microarray Data (Limma) model revealed 100,000 differentially methylated (DM) CpG sites, 20,695 of which were found to be hypomethylated and 79,305 were hypermethylated. The top DM CpG sites were associated with TNKS2, FAM45B, LOC723972, GAS7, RHBDD2 and CAMKK1. Subsequently, the most functionally enriched genes with the top 100 DM CpG sites were significantly (p ≤ 0.05) associated with SH2 domain binding, regulation of transcription, DNA-templated, nucleus, positive regulation of protein targeting to mitochondrion, nucleoplasm, Swr1 complex, histone exchange, and cellular response to organic substance. In addition, NLK, CAMKK1, LPAR2, CASP1, and NHS showed to be the most common regulators in the signaling network analysis. Taken together, these findings shed light on the methylation status of keloids that could be implicated in the underlying mechanism of keloid scars formation and remission.
Collapse
|