1
|
Xiang S, Lin Z, Makarcyzk MJ, Riewruja K, Zhang Y, Zhang X, Li Z, Clark KL, Li E, Liu S, Hao T, Fritch MR, Alexander PG, Lin H. Differences in the intrinsic chondrogenic potential of human mesenchymal stromal cells and iPSC-derived multipotent cells. Clin Transl Med 2022; 12:e1112. [PMID: 36536500 PMCID: PMC9763539 DOI: 10.1002/ctm2.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human multipotent progenitor cells (hiMPCs) created from induced pluripotent stem cells (iPSCs) represent a new cell source for cartilage regeneration. In most studies, bone morphogenetic proteins (BMPs) are needed to enhance transforming growth factor-β (TGFβ)-induced hiMPC chondrogenesis. In contrast, TGFβ alone is sufficient to result in robust chondrogenesis of human primary mesenchymal stromal cells (hMSCs). Currently, the mechanism underlying this difference between hiMPCs and hMSCs has not been fully understood. METHODS In this study, we first tested different growth factors alone or in combination in stimulating hiMPC chondrogenesis, with a special focus on chondrocytic hypertrophy. The reparative capacity of hiMPCs-derived cartilage was assessed in an osteochondral defect model created in rats. hMSCs isolated from bone marrow were included in all studies as the control. Lastly, a mechanistic study was conducted to understand why hiMPCs and hMSCs behave differently in responding to TGFβ. RESULTS Chondrogenic medium supplemented with TGFβ3 and BMP6 led to robust in vitro cartilage formation from hiMPCs with minimal hypertrophy. Cartilage tissue generated from this new method was resistant to osteogenic transition upon subcutaneous implantation and resulted in a hyaline cartilage-like regeneration in osteochondral defects in rats. Interestingly, TGFβ3 induced phosphorylation of both Smad2/3 and Smad1/5 in hMSCs, but only activated Smad2/3 in hiMPCs. Supplementing BMP6 activated Smad1/5 and significantly enhanced TGFβ's compacity in inducing hiMPC chondrogenesis. The chondro-promoting function of BMP6 was abolished by the treatment of a BMP pathway inhibitor. CONCLUSIONS This study describes a robust method to generate chondrocytes from hiMPCs with low hypertrophy for hyaline cartilage repair, as well as elucidates the difference between hMSCs and hiMPCs in response to TGFβ. Our results also indicated the importance of activating both Smad2/3 and Smad1/5 in the initiation of chondrogenesis.
Collapse
Affiliation(s)
- Shiqi Xiang
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of OrthopaedicsThe Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Zixuan Lin
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Meagan J. Makarcyzk
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPennsylvaniaUSA
| | - Kanyakorn Riewruja
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Osteoarthritis and Musculoskeleton Research Unit, Faculty of MedicineChulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Yiqian Zhang
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Xiurui Zhang
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Zhong Li
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Karen L. Clark
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Eileen Li
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Silvia Liu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tingjun Hao
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Madalyn R. Fritch
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Peter G. Alexander
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hang Lin
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPennsylvaniaUSA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Zhang L, Avery J, Yin A, Singh AM, Cliff TS, Yin H, Dalton S. Generation of Functional Brown Adipocytes from Human Pluripotent Stem Cells via Progression through a Paraxial Mesoderm State. Cell Stem Cell 2020; 27:784-797.e11. [DOI: 10.1016/j.stem.2020.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
|
3
|
Kim S, Jeon JM, Kwon OK, Choe MS, Yeo HC, Peng X, Cheng Z, Lee MY, Lee S. Comparative Proteomic Analysis Reveals the Upregulation of Ketogenesis in Cardiomyocytes Differentiated from Induced Pluripotent Stem Cells. Proteomics 2019; 19:e1800284. [PMID: 30724459 DOI: 10.1002/pmic.201800284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Diverse metabolic pathways, such as the tricarboxylic acid cycle, pyruvate metabolism, and oxidative phosphorylation, regulate the differentiation of induced pluripotent stem cells (iPSCs) to cells of specific lineages and organs. Here, the protein dynamics during cardiac differentiation of human iPSCs into cardiomyocytes (CMs) are characterized. The differentiation is induced by N-(6-methyl-2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno[3,2-d]pyrimidin-2-yl)thio]-acetamide, a Wnt signaling inhibitor, and confirmed by the mRNA and protein expression of cTnT and MLC2A in CMs. For comparative proteomics, cells from three stages, namely, hiPSCs, cardiac progenitor cells, and CMs, are prepared using the three-plex tandem mass tag labeling approach. In total, 3970 proteins in triplicate analysis are identified. As the result, the upregulation of proteins associated with branched chain amino acid degradation and ketogenesis by the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis are observed. The levels of 3-hydroxymethyl-3-methylglutaryl-CoA lyase, 3-hydroxymethyl-3-methylglutaryl-CoA synthase 2, and 3-hydroxybutyrate dehydrogenase 1, involved in ketone body metabolism, are determined using western blotting, and the level of acetoacetate, the final product of ketogenesis, is higher in CMs. Taken together, these observations indicate that proteins required for the production of diverse energy sources are naturally self-expressed during cardiomyogenic differentiation. Furthermore, acetoacetate concentration might act as a regulator of this differentiation.
Collapse
Affiliation(s)
- Sunjoo Kim
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ju Mi Jeon
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Mu Seog Choe
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Han Cheol Yeo
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Xiaojun Peng
- PTM Biolab LLC, Hangzhou, Zhejiang, 310018, China
| | | | - Min Young Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
4
|
Yao X, Dani V, Dani C. Human Pluripotent Stem Cells: A Relevant Model to Identify Pathways Governing Thermogenic Adipocyte Generation. Front Endocrinol (Lausanne) 2019; 10:932. [PMID: 32038489 PMCID: PMC6990109 DOI: 10.3389/fendo.2019.00932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/20/2019] [Indexed: 01/19/2023] Open
Abstract
Brown and brown-like adipocytes (BAs) are promising cell targets to counteract obesity thanks to their potential to drain and oxidize circulating glucose and triglycerides. However, the scarcity of BAs in human adults is a major limitation for energy expenditure based therapies. Enhanced characterization of BA progenitor cells (BAPs) and identification of critical pathways regulating their generation and differentiation into mature BAs would be an effective way to increase the BA mass. The identification of molecular mechanisms involved in the generation of thermogenic adipocytes is progressing substantially in mice. Much less is known in humans, thus highlighting the need for an in vitro model of human adipocyte development. Pluripotent stem cells (PSCs), i.e., embryonic stem cells and induced pluripotent stem cells, help gain insight into the different phases in the development of multiple cell types. We will discuss the capacity of human PSCs to differentiate into BAs in this review. Several groups, including ours, have reported low spontaneous adipocyte generation from PSCs. However, factors governing the differentiation of induced pluripotent stem cell-derived BA progenitors cells were recently identified, and the TGFβ signaling pathway has a pivotal role. The development of new relevant methods, such as the differentiation of hPSC-BAPs into 3D adipospheres to better mimick the lobular structure of human adipose tissue, will also be discussed. Differentiation of human PSCs into thermogenic adipocytes at high frequency provides an opportunity to characterize new targets for anti-obesity therapy.
Collapse
|