1
|
Zayed M, Kook SH, Jeong BH. Potential Therapeutic Use of Stem Cells for Prion Diseases. Cells 2023; 12:2413. [PMID: 37830627 PMCID: PMC10571911 DOI: 10.3390/cells12192413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Prion diseases are neurodegenerative disorders that are progressive, incurable, and deadly. The prion consists of PrPSc, the misfolded pathogenic isoform of the cellular prion protein (PrPC). PrPC is involved in a variety of physiological functions, including cellular proliferation, adhesion, differentiation, and neural development. Prion protein is expressed on the membrane surface of a variety of stem cells (SCs), where it plays an important role in the pluripotency and self-renewal matrix, as well as in SC differentiation. SCs have been found to multiply the pathogenic form of the prion protein, implying their potential as an in vitro model for prion diseases. Furthermore, due to their capability to self-renew, differentiate, immunomodulate, and regenerate tissue, SCs are prospective cell treatments in many neurodegenerative conditions, including prion diseases. Regenerative medicine has become a new revolution in disease treatment in recent years, particularly with the introduction of SC therapy. Here, we review the data demonstrating prion diseases' biology and molecular mechanism. SC biology, therapeutic potential, and its role in understanding prion disease mechanisms are highlighted. Moreover, we summarize preclinical studies that use SCs in prion diseases.
Collapse
Affiliation(s)
- Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Singh S, DeMarco ML. In Vitro Conversion Assays Diagnostic for Neurodegenerative Proteinopathies. J Appl Lab Med 2021; 5:142-157. [PMID: 31811072 DOI: 10.1373/jalm.2019.029801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/01/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND In vitro conversion assays, including real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) techniques, were first developed to study the conversion process of the prion protein to its misfolded, disease-associated conformation. The intrinsic property of prion proteins to propagate their misfolded structure was later exploited to detect subfemtogram quantities of the misfolded protein present in tissues and fluids from humans and animals with transmissible spongiform encephalopathies. Currently, conversion assays are used clinically as sensitive and specific diagnostic tools for antemortem diagnosis of prion disease. CONTENT In vitro conversion assays are now being applied to the development of diagnostics for related neurodegenerative diseases, including detection of misfolded α-synuclein in Parkinson disease, misfolded amyloid-β in Alzheimer disease, and misfolded tau in Pick disease. Like the predicate prion protein in vitro conversion diagnostics, these assays exploit the ability of endogenously misfolded proteins to induce misfolding and aggregation of their natively folded counterpart in vitro. This property enables biomarker detection of the underlying protein pathology. Herein, we review RT-QuIC and PMCA for (a) prion-, (b) α-synuclein-, (c) amyloid-β-, and (d) tau-opathies. SUMMARY Although already in routine clinical use for the detection of transmissible spongiform encephalopathies, in vitro conversion assays for other neurodegenerative disorders require further development and evaluation of diagnostic performance before consideration for clinical implementation.
Collapse
Affiliation(s)
- Serena Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, Vancouver, Canada
| |
Collapse
|
3
|
Zerr I, Cramm M, da Silva Correia SM, Zafar S, Villar-Piqué A, Llorens F, Schmitz M. Optimization of the Real-Time Quaking-Induced Conversion Assay for Prion Disease Diagnosis. Front Bioeng Biotechnol 2020; 8:586890. [PMID: 33330419 PMCID: PMC7710546 DOI: 10.3389/fbioe.2020.586890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
The real-time quaking-induced conversion (RT-QuIC) assay is a highly reproducible and robust methodology exhibiting an excellent pre-mortem diagnostic accuracy for prion diseases. However, the protocols might be time-consuming and improvement of the detection technology is needed. In the present study, we investigated the influence of a pre-analytical cerebrospinal fluid (CSF) treatment with proteinase K (PK) on the kinetic of the RT-QuIC signal response. For this purpose, we added PK at different concentrations in RT-QuIC reactions seeded with Creutzfeldt–Jakob disease (sCJD) CSF. We observed that a mild pre-analytical PK treatment of CSF samples resulted in an increased seeding efficiency of the RT-QuIC reaction. Quantitative seeding parameters, such as a higher area under the curve (AUC) value or a shorter lag phase indicated a higher conversion efficiency after treatment. The diagnostic accuracy resulting from 2 μg/ml PK treatment was analyzed in a retrospective study, where we obtained a sensitivity of 89%. Additionally, we analyzed the agreement with the previously established standard RT-QuIC protocol without PK treatment in a prospective study. Here, we found an overall agreement of 94% to 96%. A Cohen’s kappa of 0.9036 (95% CI: 0.8114–0.9958) indicates an almost perfect agreement between both protocols. In conclusion, the outcome of our study can be used for a further optimization of the RT-QuIC assay in particular for a reduction of the testing time.
Collapse
Affiliation(s)
- Inga Zerr
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medical Center Göttingen, Göttingen, Germany
| | - Maria Cramm
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medical Center Göttingen, Göttingen, Germany
| | - Susana Margarida da Silva Correia
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medical Center Göttingen, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medical Center Göttingen, Göttingen, Germany.,Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Anna Villar-Piqué
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medical Center Göttingen, Göttingen, Germany.,Bellvitge Biomedical Research Institute, Hospitalet de Llobregat, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases, Institute of Health Carlos III, Hospitalet de Llobregat, Barcelona, Spain
| | - Franc Llorens
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medical Center Göttingen, Göttingen, Germany.,Bellvitge Biomedical Research Institute, Hospitalet de Llobregat, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases, Institute of Health Carlos III, Hospitalet de Llobregat, Barcelona, Spain
| | - Matthias Schmitz
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
5
|
Validation of Poly(Propylene Imine) Glycodendrimers Towards Their Anti-prion Conversion Efficiency. Mol Neurobiol 2019; 57:1863-1874. [PMID: 31848935 DOI: 10.1007/s12035-019-01837-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Prion diseases, such as the sporadic Creutzfeldt-Jakob disease (sCJD), are a class of fatal neurodegenerative disorders. Currently, there is no efficient treatment or therapy available. Hence, the search for molecules that may inhibit the conversion of the cellular prion protein (PrPC) into its pathological counterpart PrPScrapie (PrPSc) is of great urgency. Here, we report the generation- and dose-dependent biological action of dense-shell poly(propylene imine) (PPI) glycodendrimers by using scrapie-infected neuroblastoma (ScN2a) cells and the real-time quaking-induced conversion assay (RT-QuIC) for validation of anti-prion efficiencies. Whereas the 2nd and 3rd generation of PPI glycodendrimers exhibited anti-prion conversion efficiency in ScN2a cells validated by RT-QuIC analysis, we observed that the 4th generation of glycodendrimers had shown no significant effect. Translational RT-QuIC studies conducted with human prions derived from sCJD patients indicated an anti-prion conversion effect (not on PrPRes degradation) of PPI glycodendrimers against human prions with the highest inhibitory activity of the 4th generation of PPI glycodendrimers towards prion aggregation compared to the 2nd and 3rd generation. In conclusion, our study highlights the potential of PPI glycodendrimers as therapeutic compounds due to their anti-conversion activity on human prions in a PrPSc strain depending manner.
Collapse
|
6
|
Thüne K, Schmitz M, Villar-Piqué A, Altmeppen HC, Schlomm M, Zafar S, Glatzel M, Llorens F, Zerr I. The cellular prion protein and its derived fragments in human prion diseases and their role as potential biomarkers. Expert Rev Mol Diagn 2019; 19:1007-1018. [PMID: 31512940 DOI: 10.1080/14737159.2019.1667231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Human prion diseases are a heterogeneous group of incurable and debilitating conditions characterized by a progressive degeneration of the central nervous system. The conformational changes of the cellular prion protein and its formation into an abnormal isoform, spongiform degeneration, neuronal loss, and neuroinflammation are central to prion disease pathogenesis. It has been postulated that truncated variants of aggregation-prone proteins are implicated in neurodegenerative mechanisms. An increasing body of evidence indicates that proteolytic fragments and truncated variants of the prion protein are formed and accumulated in the brain of prion disease patients. These prion protein variants provide a high degree of relevance to disease pathology and diagnosis. Areas covered: In the present review, we summarize the current knowledge on the occurrence of truncated prion protein species and their potential roles in pathophysiological states during prion diseases progression. In addition, we discuss their usability as a diagnostic biomarker in prion diseases. Expert opinion: Either as a primary factor in the formation of prion diseases or as a consequence from neuropathological affection, abnormal prion protein variants and fragments may provide independent information about mechanisms of prion conversion, pathological states, or disease progression.
Collapse
Affiliation(s)
- Katrin Thüne
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Anna Villar-Piqué
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany.,Network Center for Biomedical Research in Neurodegenerative Diseases, Institute Carlos III, Ministry of Health, CIBERNED, Hospitalet de Llobregat , Spain
| | | | - Markus Schlomm
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center HH-Eppendorf (UKE) , Hamburg , Germany
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany.,Network Center for Biomedical Research in Neurodegenerative Diseases, Institute Carlos III, Ministry of Health, CIBERNED, Hospitalet de Llobregat , Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat , Barcelona , Spain
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| |
Collapse
|