1
|
Xu Y, Wang P, Hu T, Ning K, Bao Y. Notoginsenoside R1 Attenuates H/R Injury in H9c2 Cells by Maintaining Mitochondrial Homeostasis. Curr Issues Mol Biol 2025; 47:44. [PMID: 39852159 PMCID: PMC11763921 DOI: 10.3390/cimb47010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Mitochondrial homeostasis is crucial for maintaining cellular energy production and preventing oxidative stress, which is essential for overall cellular function and longevity. Mitochondrial damage and dysfunction often occur concomitantly in myocardial ischemia-reperfusion injury (MIRI). Notoginsenoside R1 (NGR1), a unique saponin from the traditional Chinese medicine Panax notoginseng, has been shown to alleviate MIRI in previous studies, though its precise mechanism remains unclear. This study aimed to elucidate the mechanisms of NGR1 in maintaining mitochondrial homeostasis in hypoxia/reoxygenation (H/R) H9c2 cells. The results showed that NGR1 pretreatment effectively increased cell survival rates post-H/R, reduced lactate dehydrogenase (LDH) leakage, and mitigated cell damage. Further investigation into mitochondria revealed that NGR1 alleviated mitochondrial structural damage, improved mitochondrial membrane permeability transition pore (mPTP) persistence, and prevented mitochondrial membrane potential (Δψm) depolarization. Additionally, NGR1 pretreatment enhanced ATP levels, increased the activity of mitochondrial respiratory chain complexes I-V after H/R, and reduced excessive mitochondrial reactive oxygen species (mitoROS) production, thereby protecting mitochondrial function. Further analysis indicated that NGR1 upregulated the expression of mitochondrial biogenesis-related proteins (PGC-1α, Nrf1, Nrf2) and mitochondrial fusion proteins (Opa1, Mfn1, Mfn2), while downregulating mitochondrial fission proteins (Fis1, Drp1) and reducing mitochondrial autophagy (mitophagy) levels, as well as the expression of mitophagy-related proteins (Pink1, Parkin, BNIP3) post-H/R. Therefore, this study showed that NGR1 can maintain mitochondrial homeostasis by regulating mitophagy, mitochondrial fission-fusion dynamics, and mitochondrial biogenesis, thereby alleviating H9c2 cell H/R injury and protecting cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | | | - Yimin Bao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.X.)
| |
Collapse
|
2
|
Ogurlu B, Hamelink TL, Van Tricht IM, Leuvenink HGD, De Borst MH, Moers C, Pool MBF. Utilizing pathophysiological concepts of ischemia-reperfusion injury to design renoprotective strategies and therapeutic interventions for normothermic ex vivo kidney perfusion. Am J Transplant 2024; 24:1110-1126. [PMID: 38184242 DOI: 10.1016/j.ajt.2024.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Normothermic machine perfusion (NMP) has emerged as a promising tool for the preservation, viability assessment, and repair of deceased-donor kidneys prior to transplantation. These kidneys inevitably experience a period of ischemia during donation, which leads to ischemia-reperfusion injury when NMP is subsequently commenced. Ischemia-reperfusion injury has a major impact on the renal vasculature, metabolism, oxygenation, electrolyte balance, and acid-base homeostasis. With an increased understanding of the underlying pathophysiological mechanisms, renoprotective strategies and therapeutic interventions can be devised to minimize additional injury during normothermic reperfusion, ensure the safe implementation of NMP, and improve kidney quality. This review discusses the pathophysiological alterations in the vasculature, metabolism, oxygenation, electrolyte balance, and acid-base homeostasis of deceased-donor kidneys and delineates renoprotective strategies and therapeutic interventions to mitigate renal injury and improve kidney quality during NMP.
Collapse
Affiliation(s)
- Baran Ogurlu
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Tim L Hamelink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Isa M Van Tricht
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin H De Borst
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Zhou Y, Qiu T, Wang T, Yu B, Xia K, Guo J, Liu Y, Ma X, Zhang L, Zou J, Chen Z, Zhou J. Research progress on the role of mitochondria in the process of hepatic ischemia-reperfusion injury. Gastroenterol Rep (Oxf) 2024; 12:goae066. [PMID: 38912038 PMCID: PMC11193119 DOI: 10.1093/gastro/goae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 06/25/2024] Open
Abstract
During liver ischemia-reperfusion injury, existing mechanisms involved oxidative stress, calcium overload, and the activation of inflammatory responses involve mitochondrial injury. Mitochondrial autophagy, a process that maintains the normal physiological activity of mitochondria, promotes cellular metabolism, improves cellular function, and facilitates organelle renewal. Mitochondrial autophagy is involved in oxidative stress and apoptosis, of which the PINK1-Parkin pathway is a major regulatory pathway, and the deletion of PINK1 and Parkin increases mitochondrial damage, reactive oxygen species production, and inflammatory response, playing an important role in mitochondrial quality regulation. In addition, proper mitochondrial permeability translational cycle regulation can help maintain mitochondrial stability and mitigate hepatocyte death during ischemia-reperfusion injury. This mechanism is also closely related to oxidative stress, calcium overload, and the aforementioned autophagy pathway, all of which leads to the augmentation of the mitochondrial membrane permeability transition pore opening and cause apoptosis. Moreover, the release of mitochondrial DNA (mtDNA) due to oxidative stress further aggravates mitochondrial function impairment. Mitochondrial fission and fusion are non-negligible processes required to maintain the dynamic renewal of mitochondria and are essential to the dynamic stability of these organelles. The Bcl-2 protein family also plays an important regulatory role in the mitochondrial apoptosis signaling pathway. A series of complex mechanisms work together to cause hepatic ischemia-reperfusion injury (HIRI). This article reviews the role of mitochondria in HIRI, hoping to provide new therapeutic clues for alleviating HIRI in clinical practice.
Collapse
Affiliation(s)
- Yujie Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Kang Xia
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yiting Liu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Long Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jilin Zou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
4
|
Stevens JA, Dobratz TC, Fischer KD, Palmer A, Bourdage K, Wong AJ, Chapoy-Villanueva H, Garry DJ, Liu JC, Kay MW, Kuzmiak-Glancy S, Townsend D. Mechanisms of reduced myocardial energetics of the dystrophic heart. Am J Physiol Heart Circ Physiol 2024; 326:H396-H407. [PMID: 38099842 PMCID: PMC11219055 DOI: 10.1152/ajpheart.00636.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Heart disease is a leading cause of death in patients with Duchenne muscular dystrophy (DMD), characterized by the progressive replacement of contractile tissue with scar tissue. Effective therapies for dystrophic cardiomyopathy will require addressing the disease before the onset of fibrosis, however, the mechanisms of the early disease are poorly understood. To understand the pathophysiology of DMD, we perform a detailed functional assessment of cardiac function of the mdx mouse, a model of DMD. These studies use a combination of functional, metabolomic, and spectroscopic approaches to fully characterize the contractile, energetic, and mitochondrial function of beating hearts. Through these innovative approaches, we demonstrate that the dystrophic heart has reduced cardiac reserve and is energetically limited. We show that this limitation does not result from poor delivery of oxygen. Using spectroscopic approaches, we provide evidence that mitochondria in the dystrophic heart have attenuated mitochondrial membrane potential and deficits in the flow of electrons in complex IV of the electron transport chain. These studies provide evidence that poor myocardial energetics precede the onset of significant cardiac fibrosis and likely results from mitochondrial dysfunction centered around complex IV and reduced membrane potential. The multimodal approach used here implicates specific molecular components in the etiology of reduced energetics. Future studies focused on these targets may provide therapies that improve the energetics of the dystrophic heart leading to improved resiliency against damage and preservation of myocardial contractile tissue.NEW & NOTEWORTHY Dystrophic hearts have poor contractile reserve that is associated with a reduction in myocardial energetics. We demonstrate that oxygen delivery does not contribute to the limited energy production of the dystrophic heart even with increased workloads. Cytochrome optical spectroscopy of the contracting heart reveals alterations in complex IV and evidence of depolarized mitochondrial membranes. We show specific alterations in the electron transport chain of the dystrophic heart that may contribute to poor myocardial energetics.
Collapse
Affiliation(s)
- Jackie A Stevens
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Tyler C Dobratz
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Kaleb D Fischer
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Alexandria Palmer
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Kira Bourdage
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Anne J Wong
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hector Chapoy-Villanueva
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
- Institute for Obesity Research Tecnologico de Monterrey, Monterrey, Mexico
| | - Daniel J Garry
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
- Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota, United States
- Paul and Sheila Muscular Dystrophy Center, University of Minnesota, Minneapolis, Minnesota, United States
| | - Julia C Liu
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Matthew W Kay
- Department of Biomedical Engineering, School of Engineering and Applied Science, George Washington University, Washington, District of Columbia, United States
| | - Sarah Kuzmiak-Glancy
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, United States
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
- Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota, United States
- Paul and Sheila Muscular Dystrophy Center, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
5
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 236] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
6
|
MacEwen MJ, Sancak Y. Beyond the matrix: structural and physiological advancements in mitochondrial calcium signaling. Biochem Soc Trans 2023; 51:665-673. [PMID: 36960768 PMCID: PMC10212541 DOI: 10.1042/bst20220317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
Mitochondrial calcium (Ca2+) signaling has long been known to regulate diverse cellular functions, ranging from ATP production via oxidative phosphorylation, to cytoplasmic Ca2+ signaling to apoptosis. Central to mitochondrial Ca2+ signaling is the mitochondrial Ca2+ uniporter complex (MCUC) which enables Ca2+ flux from the cytosol into the mitochondrial matrix. Several pivotal discoveries over the past 15 years have clarified the identity of the proteins comprising MCUC. Here, we provide an overview of the literature on mitochondrial Ca2+ biology and highlight recent findings on the high-resolution structure, dynamic regulation, and new functions of MCUC, with an emphasis on publications from the last five years. We discuss the importance of these findings for human health and the therapeutic potential of targeting mitochondrial Ca2+ signaling.
Collapse
Affiliation(s)
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|
7
|
Zhao P, Li X, Yang Q, Lu Y, Wang G, Yang H, Dong J, Zhang H. Malvidin alleviates mitochondrial dysfunction and ROS accumulation through activating AMPK-α/UCP2 axis, thereby resisting inflammation and apoptosis in SAE mice. Front Pharmacol 2023; 13:1038802. [PMID: 36699054 PMCID: PMC9868257 DOI: 10.3389/fphar.2022.1038802] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
This study aimed to explore the protective roles of malvidin in life-threatened sepsis-associated encephalopathy (SAE) and illustrate the underlying mechanism. SAE mice models were developed and treated with malvidin for subsequently protective effects evaluation. Malvidin restored neurobehavioral retardation, declined serum S100β and NSE levels, sustained cerebrum morphological structure, improved blood-brain barrier integrity with elevated tight junction proteins, and decreased evans blue leakage, and finally protect SAE mice from brain injury. Mechanistically, malvidin prevented cerebrum from mitochondrial dysfunction with enhanced JC-1 aggregates and ATP levels, and ROS accumulation with decreased lipid peroxidation and increased antioxidant enzymes. UCP2 protein levels were found to be decreased after LPS stimulation in the cerebrum and BV-2 cells, and malvidin recovered its levels in a ROS dependent manner. In vivo inhibition of UCP2 with genipin or in vitro interference with siRNA UCP2 both disrupted the mitochondrial membrane potential, decreased ATP levels and intensified DCF signals, being a key target for malvidin. Moreover, dorsomorphin block assays verified that malvidin upregulated UCP2 expression through phosphorylating AMPK in SAE models. Also, malvidin alleviated SAE progression through inhibition of ROS-dependent NLRP3 inflammasome activation mediated serum pro-inflammatory cytokines secretion and mitochondrial pathway mediated apoptosis with weakened apoptosis body formation and tunel positive signals, and decreased Bax, cytochrome C, caspase-3 and increased Bcl-2 protein levels. Overall, this study illustrated that malvidin targeted AMPK-α/UCP2 axis to restore LPS-induced mitochondrial dysfunction and alleviate ROS accumulation, which further inhibits NLRP3 inflammasome activation and mitochondrial apoptosis in a ROS dependent way, and ultimately protected SAE mice, providing a reference for the targeted development of SAE prophylactic approach.
Collapse
Affiliation(s)
- Panpan Zhao
- Institute of Neuroscience, Department of Vascular Surgery, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Xiaomin Li
- Department of Oncology, The Second People’s Hospital of Lianyungang City, Lianyungang, China
| | - Qiankun Yang
- Institute of Neuroscience, Department of Vascular Surgery, The First People’s Hospital of Lianyungang, Lianyungang, China,Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Yingzhi Lu
- Department of Oncology, The Second People’s Hospital of Lianyungang City, Lianyungang, China
| | - Guanglu Wang
- Institute of Neuroscience, Department of Vascular Surgery, The First People’s Hospital of Lianyungang, Lianyungang, China,Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Haitao Yang
- Institute of Neuroscience, Department of Vascular Surgery, The First People’s Hospital of Lianyungang, Lianyungang, China,Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Honggang Zhang
- Institute of Neuroscience, Department of Vascular Surgery, The First People’s Hospital of Lianyungang, Lianyungang, China,*Correspondence: Honggang Zhang,
| |
Collapse
|
8
|
He J, Khan UZ, Qing L, Wu P, Tang J. Improving the ischemia-reperfusion injury in vascularized composite allotransplantation: Clinical experience and experimental implications. Front Immunol 2022; 13:998952. [PMID: 36189311 PMCID: PMC9523406 DOI: 10.3389/fimmu.2022.998952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Long-time ischemia worsening transplant outcomes in vascularized composite allotransplantation (VCA) is often neglected. Ischemia-reperfusion injury (IRI) is an inevitable event that follows reperfusion after a period of cold static storage. The pathophysiological mechanism activates local inflammation, which is a barrier to allograft long-term immune tolerance. The previous publications have not clearly described the relationship between the tissue damage and ischemia time, nor the rejection grade. In this review, we found that the rejection episodes and rejection grade are usually related to the ischemia time, both in clinical and experimental aspects. Moreover, we summarized the potential therapeutic measures to mitigate the ischemia-reperfusion injury. Compare to static preservation, machine perfusion is a promising method that can keep VCA tissue viability and extend preservation time, which is especially beneficial for the expansion of the donor pool and better MHC-matching.
Collapse
Affiliation(s)
- Jiqiang He
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Umar Zeb Khan
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Liming Qing
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Panfeng Wu
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Juyu Tang
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Li Y, Ma Y, Dang QY, Fan XR, Han CT, Xu SZ, Li PY. Assessment of mitochondrial dysfunction and implications in cardiovascular disorders. Life Sci 2022; 306:120834. [PMID: 35902031 DOI: 10.1016/j.lfs.2022.120834] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
Mitochondria play a pivotal role in cellular function, not only acting as the powerhouse of the cell, but also regulating ATP synthesis, reactive oxygen species (ROS) production, intracellular Ca2+ cycling, and apoptosis. During the past decade, extensive progress has been made in the technology to assess mitochondrial functions and accumulating evidences have shown that mitochondrial dysfunction is a key pathophysiological mechanism for many diseases including cardiovascular disorders, such as ischemic heart disease, cardiomyopathy, hypertension, atherosclerosis, and hemorrhagic shock. The advances in methodology have been accelerating our understanding of mitochondrial molecular structure and function, biogenesis and ROS and energy production, which facilitates new drug target identification and therapeutic strategy development for mitochondrial dysfunction-related disorders. This review will focus on the assessment of methodologies currently used for mitochondrial research and discuss their advantages, limitations and the implications of mitochondrial dysfunction in cardiovascular disorders.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Ma
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qing-Ya Dang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xin-Rong Fan
- Department of Cardiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chu-Ting Han
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shang-Zhong Xu
- Academic Diabetes, Endocrinology and Metabolism, Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom.
| | - Peng-Yun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
10
|
Morales-García L, Ricardez-García C, Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S. Coupling/Uncoupling Reversibility in Isolated Mitochondria from Saccharomyces cerevisiae. Life (Basel) 2021; 11:life11121307. [PMID: 34947838 PMCID: PMC8707985 DOI: 10.3390/life11121307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
The yeast Saccharomyces cerevisiae uses fermentation as the preferred pathway to obtain ATP and requires the respiratory chain to re-oxidize the NADH needed for activity of Glyceraldehyde-3-phosphate. This process is favored by uncoupling of oxidative phosphorylation (OxPhos), which is at least partially controlled by the mitochondrial unspecific pore (ScMUC). When mitochondrial ATP synthesis is needed as in the diauxic phase or during mating, a large rise in Ca2+ concentration ([Ca2+]) closes ScMUC, coupling OxPhos. In addition, ScMUC opening/closing is mediated by the ATP/ADP ratio, which indicates cellular energy needs. Here, opening and closing of ScMUC was evaluated in isolated mitochondria from S. cerevisiae at different incubation times and in the presence of different ATP/ADP ratios or varying [Ca2+]. Measurements of the rate of O2 consumption, mitochondrial swelling, transmembrane potential and ROS generation were conducted. It was observed that ScMUC opening was reversible, a high ATP/ADP ratio promoted opening and [Ca2+] closed ScMUC even after several minutes of incubation in the open state. In the absence of ATP synthesis, closure of ScMUC resulted in an increase in ROS.
Collapse
Affiliation(s)
- Lilia Morales-García
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, UNAM, Mexico City 04510, Mexico; (L.M.-G.); (C.R.-G.); (P.C.-T.); (N.C.-F.)
- Department of Biochemistry, Medicine School, UNAM, Mexico City 04510, Mexico
| | - Carolina Ricardez-García
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, UNAM, Mexico City 04510, Mexico; (L.M.-G.); (C.R.-G.); (P.C.-T.); (N.C.-F.)
| | - Paulina Castañeda-Tamez
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, UNAM, Mexico City 04510, Mexico; (L.M.-G.); (C.R.-G.); (P.C.-T.); (N.C.-F.)
| | - Natalia Chiquete-Félix
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, UNAM, Mexico City 04510, Mexico; (L.M.-G.); (C.R.-G.); (P.C.-T.); (N.C.-F.)
| | - Salvador Uribe-Carvajal
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, UNAM, Mexico City 04510, Mexico; (L.M.-G.); (C.R.-G.); (P.C.-T.); (N.C.-F.)
- Department of Biochemistry, Medicine School, UNAM, Mexico City 04510, Mexico
- Correspondence: ; Tel.: +52-5555625632
| |
Collapse
|
11
|
Saurav S, Tanwar J, Ahuja K, Motiani RK. Dysregulation of host cell calcium signaling during viral infections: Emerging paradigm with high clinical relevance. Mol Aspects Med 2021; 81:101004. [PMID: 34304899 PMCID: PMC8299155 DOI: 10.1016/j.mam.2021.101004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Viral infections are one of the leading causes of human illness. Viruses take over host cell signaling cascades for their replication and infection. Calcium (Ca2+) is a versatile and ubiquitous second messenger that modulates plethora of cellular functions. In last two decades, a critical role of host cell Ca2+ signaling in modulating viral infections has emerged. Furthermore, recent literature clearly implicates a vital role for the organellar Ca2+ dynamics (influx and efflux across organelles) in regulating virus entry, replication and severity of the infection. Therefore, it is not surprising that a number of viral infections including current SARS-CoV-2 driven COVID-19 pandemic are associated with dysregulated Ca2+ homeostasis. The focus of this review is to first discuss the role of host cell Ca2+ signaling in viral entry, replication and egress. We further deliberate on emerging literature demonstrating hijacking of the host cell Ca2+ dynamics by viruses. In particular, a variety of viruses including SARS-CoV-2 modulate lysosomal and cytosolic Ca2+ signaling for host cell entry and replication. Moreover, we delve into the recent studies, which have demonstrated the potential of several FDA-approved drugs targeting Ca2+ handling machinery in inhibiting viral infections. Importantly, we discuss the prospective of targeting intracellular Ca2+ signaling for better management and treatment of viral pathogenesis including COVID-19. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention.
Collapse
Affiliation(s)
- Suman Saurav
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi-110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
12
|
Naaktgeboren WR, Binyam D, Stuiver MM, Aaronson NK, Teske AJ, van Harten WH, Groen WG, May AM. Efficacy of Physical Exercise to Offset Anthracycline-Induced Cardiotoxicity: A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. J Am Heart Assoc 2021; 10:e021580. [PMID: 34472371 PMCID: PMC8649276 DOI: 10.1161/jaha.121.021580] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Background Physical exercise is an intervention that might protect against doxorubicin‐induced cardiotoxicity. In this meta‐analysis and systematic review, we aimed to estimate the effect of exercise on doxorubicin‐induced cardiotoxicity and to evaluate mechanisms underlying exercise‐mediated cardioprotection using (pre)clinical evidence. Methods and Results We conducted a systematic search in PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases. Cochrane's and Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk‐of‐bias tools were used to assess the validity of human and animal studies, respectively. Cardiotoxicity outcomes reported by ≥3 studies were pooled and structured around the type of exercise intervention. Forty articles were included, of which 3 were clinical studies. Overall, in humans (sample sizes ranging from 24 to 61), results were indicative of exercise‐mediated cardioprotection, yet they were not sufficient to establish whether physical exercise protects against doxorubicin‐induced cardiotoxicity. In animal studies (n=37), a pooled analysis demonstrated that forced exercise interventions significantly mitigated in vivo and ex vivo doxorubicin‐induced cardiotoxicity compared with nonexercised controls. Similar yet slightly smaller effects were found for voluntary exercise interventions. We identified oxidative stress and related pathways, and less doxorubicin accumulation as mechanisms underlying exercise‐induced cardioprotection, of which the latter could act as an overarching mechanism. Conclusions Animal studies indicate that various exercise interventions can protect against doxorubicin‐induced cardiotoxicity in rodents. Less doxorubicin accumulation in cardiac tissue could be a key underlying mechanism. Given the preclinical evidence and limited availability of clinical data, larger and methodologically rigorous clinical studies are needed to clarify the role of physical exercise in preventing cardiotoxicity in patients with cancer. Registration URL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42019118218.
Collapse
Affiliation(s)
- Willeke R Naaktgeboren
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - David Binyam
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Martijn M Stuiver
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Center for Quality of Life The Netherlands Cancer Institute Amsterdam The Netherlands.,Centre of Expertise Urban Vitality Faculty of Health Amsterdam University of Applied Sciences Amsterdam The Netherlands
| | - Neil K Aaronson
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands
| | - Arco J Teske
- Department of Cardiology University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Wim H van Harten
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Department of Health Technology and Services Research University of Twente Enschede The Netherlands
| | - Wim G Groen
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| |
Collapse
|
13
|
Guo M, Lu B, Gan J, Wang S, Jiang X, Li H. Apoptosis detection: a purpose-dependent approach selection. Cell Cycle 2021; 20:1033-1040. [PMID: 34000960 PMCID: PMC8208110 DOI: 10.1080/15384101.2021.1919830] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 01/20/2023] Open
Abstract
Apoptosis is closely associated with many diseases. Detection of apoptosis can be achieved by morphology, biochemistry, molecular biology, immunology, and other techniques. However, as technologies are increasingly used for the detection of apoptosis, many researchers are confused about how to choose a suitable method to detect apoptosis. Selection of a suitable detection method for apoptosis will help clinical diagnosis and prevention of diseases. This article reviews the selection of optimal apoptosis-detection methods based on research purposes and technique principles.
Collapse
Affiliation(s)
- Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangcui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Abstract
OBJECTIVES Mechanical ventilation is associated with primary diaphragmatic dysfunction, also termed ventilator-induced diaphragmatic dysfunction. Studies evaluating diaphragmatic function recovery after extubation are lacking. We evaluated early and late recoveries from ventilator-induced diaphragmatic dysfunction in a mouse model. DESIGN Experimental randomized study. SETTING Research laboratory. SUBJECTS C57/BL6 mice. INTERVENTIONS Six groups of C57/BL6 mice. Mice were ventilated for 6 hours and then euthanatized immediately (n = 18), or 1 (n = 18) or 10 days after extubation with (n = 5) and without S107 (n = 16) treatment. Mice euthanatized immediately after 6 hours of anesthesia (n = 15) or after 6 hours of anesthesia and 10 days of recovery (n = 5) served as controls. MEASUREMENTS AND MAIN RESULTS For each group, diaphragm force production, posttranslational modification of ryanodine receptor, oxidative stress, proteolysis, and cross-sectional areas were evaluated. After 6 hours of mechanical ventilation, diaphragm force production was decreased by 25-30%, restored to the control levels 1 day after extubation, and secondarily decreased by 20% 10 days after extubation compared with controls. Ryanodine receptor was protein kinase A-hyperphosphorylated, S-nitrosylated, oxidized, and depleted of its stabilizing subunit calstabin-1 6 hours after the onset of the mechanical ventilation, 1 and 10 days after extubation. Post extubation treatment with S107, a Rycal drug that stabilizes the ryanodine complex, did reverse the loss of diaphragmatic force associated with mechanical ventilation. Total protein oxidation was restored to the control levels 1 day after extubation. Markers of proteolysis including calpain 1 and calpain 2 remained activated 10 days after extubation without significant changes in cross-sectional areas. CONCLUSIONS We report that mechanical ventilation is associated with a late diaphragmatic dysfunction related to a structural alteration of the ryanodine complex that is reversed with the S107 treatment.
Collapse
|
15
|
Strubbe-Rivera JO, Chen J, West BA, Parent KN, Wei GW, Bazil JN. Modeling the Effects of Calcium Overload on Mitochondrial Ultrastructural Remodeling. APPLIED SCIENCES-BASEL 2021; 11. [PMID: 33898062 PMCID: PMC8067326 DOI: 10.3390/app11052071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitochondrial cristae are dynamic invaginations of the inner membrane and play a key role in its metabolic capacity to produce ATP. Structural alterations caused by either genetic abnormalities or detrimental environmental factors impede mitochondrial metabolic fluxes and lead to a decrease in their ability to meet metabolic energy requirements. While some of the key proteins associated with mitochondrial cristae are known, very little is known about how the inner membrane dynamics are involved in energy metabolism. In this study, we present a computational strategy to understand how cristae are formed using a phase-based separation approach of both the inner membrane space and matrix space, which are explicitly modeled using the Cahn–Hilliard equation. We show that cristae are formed as a consequence of minimizing an energy function associated with phase interactions which are subject to geometric boundary constraints. We then extended the model to explore how the presence of calcium phosphate granules, entities that form in calcium overload conditions, exert a devastating inner membrane remodeling response that reduces the capacity for mitochondria to produce ATP. This modeling approach can be extended to include arbitrary geometrical constraints, the spatial heterogeneity of enzymes, and electrostatic effects to mechanize the impact of ultrastructural changes on energy metabolism.
Collapse
Affiliation(s)
- Jasiel O. Strubbe-Rivera
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Jiahui Chen
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Benjamin A. West
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Kristin N. Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jason N. Bazil
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
16
|
Song J, Ham J, Hong T, Song G, Lim W. Fraxetin Suppresses Cell Proliferation and Induces Apoptosis through Mitochondria Dysfunction in Human Hepatocellular Carcinoma Cell Lines Huh7 and Hep3B. Pharmaceutics 2021; 13:pharmaceutics13010112. [PMID: 33477262 PMCID: PMC7830088 DOI: 10.3390/pharmaceutics13010112] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Fraxetin is a coumarin scaffold compound extracted from Fraxinus rhynchophylla. It has antioxidant, anti-inflammatory, hepatoprotective, and antifibrotic effects. Furthermore, fraxetin has anticancer effects in breast and lung cancer. We aimed to evaluate whether fraxetin has anticancer activity in hepatocellular carcinoma (HCC) cells and its underlying mechanism. We demonstrated the anticancer effects of fraxetin in the HCC cell lines Huh7 and Hep3B. We confirmed that fraxetin inhibited cell proliferation (42% ± 10% Huh7; 52% ± 7% Hep3B) by arresting the cell cycle and inducing apoptosis in both cell lines. Moreover, fraxetin increased reactive oxygen species production (221% ± 55% Huh7; 460% ± 73% Hep3B), depolarized the mitochondrial membranes (ΔΨm) (345% ± 160% Huh7; 462% ± 140% Hep3B), and disrupted calcium homeostasis in both HCC cell lines. Chelating calcium ions with BAPTA-AM restored proliferation in fraxetin-treated Huh7 cells but not in Hep3B cells. Fraxetin did not affect the phosphorylation of extracellular-signal-regulated kinase 1/2, whereas it decreased JNK and phosphoinositide 3-kinase signaling. Furthermore, fraxetin and mitogen-activated protein kinase pharmacological inhibitors had synergistic antiproliferative effects on HCC cells. Although our study was limited to in vitro data that require validation, we suggest that fraxetin is a potential therapeutic agent against HCC progression.
Collapse
Affiliation(s)
- Jisoo Song
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (J.S.); (T.H.)
| | - Jiyeon Ham
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea;
| | - Taeyeon Hong
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (J.S.); (T.H.)
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea;
- Correspondence: (G.S.); (W.L.); Tel.: +82-2-3290-3012 (G.S.); +82-2-910-4773 (W.L.)
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (J.S.); (T.H.)
- Correspondence: (G.S.); (W.L.); Tel.: +82-2-3290-3012 (G.S.); +82-2-910-4773 (W.L.)
| |
Collapse
|
17
|
Pozdnyakov DI, Voronkov A. Correction of Mitochondrial Dysfunction by 4-Hydroxy-3,5-Ditretbutyl Cinnamic Acid in Experimental Alzheimer’s Disease Induced by Aβ Injection in Rats. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.92] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Alzheimer’s disease is the main form of dementia, which affects more than46 million people every year. In the pathogenesis of Alzheimer’s disease, a significant roleplayed mitochondrial dysfunction, which is a promising pharmacotherapeutic target ofneuroprotective therapy. In this regard, this study aimed to evaluate the effect of the 4-hydroxy-3,5-ditretbutyl cinnamic acid on changes of mitochondrial function in experimental Alzheimer’sdisease induced by Aβ injection in rats. Methods: Alzheimer’s disease was modeled on Wistar rats by injecting a fragment of β-amyloid(Aß 1-42) into the CA1 part of the hippocampus. The test-compound (4-hydroxy-3,5-ditretbutylcinnamic acid, 100 mg/kg, per os) and the reference drugs (resveratrol, 20 mg/kg, per os andEGB671, 100 mg/kg, per os) were administered for 60 days after surgery. The restoration of amemorable trace in animals was evaluated in the Morris water maze test. The concentrationof β -amyloid, Tau-protein, and changes in parameters characterizing mitochondrial function(cellular respiration, concentration of mitochondrial ROS, activity of apoptosis reactions(caspase-3 and apoptosis induced factor) were also determined. Results: This study showed that the administration of 4-hydroxy-3,5-ditretbutyl cinnamic acidat a dose of 100 mg/kg (per os) in rats with reproduced Alzheimer’s disease contributed to thenormalization of mitochondrial respiratory function. It was expressed in the normalizationof aerobic metabolism, increased activity of respiratory complexes and stabilization ofmitochondrial membrane potential. Also, when animals were treated with 4-hydroxy-3,5-ditretbutyl cinnamic acid, there was a decrease in the concentration of intracellular calcium(by 39.7% (p<0.05)), the intensity of apoptosis reactions, and an increase of the latent time ofthe mitochondrial permeability transition pore opening (by 3.8 times (p<0.05)), and decreasesH2O2 concentration (by 21.2% (p<0.05)). Conclusion: In the course of this study, it was found that 4-hydroxy-3,5-ditretbutyl cinnamicacid exceeds the value of neuroprotective action in compared to the reference agents –resveratrol (20 mg/kg) and Ginkgo biloba extract (EGB671, 100 mg/kg).
Collapse
Affiliation(s)
| | - Andrey Voronkov
- Medical College, Volgograd State Medical University, Volgograd, Russia
| |
Collapse
|
18
|
Chvanov M, Voronina S, Zhang X, Telnova S, Chard R, Ouyang Y, Armstrong J, Tanton H, Awais M, Latawiec D, Sutton R, Criddle DN, Tepikin AV. Knockout of the Mitochondrial Calcium Uniporter Strongly Suppresses Stimulus-Metabolism Coupling in Pancreatic Acinar Cells but Does Not Reduce Severity of Experimental Acute Pancreatitis. Cells 2020; 9:cells9061407. [PMID: 32516955 PMCID: PMC7349284 DOI: 10.3390/cells9061407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis is a frequent disease that lacks specific drug treatment. Unravelling the molecular mechanisms of acute pancreatitis is essential for the development of new therapeutics. Several inducers of acute pancreatitis trigger sustained Ca2+ increases in the cytosol and mitochondria of pancreatic acinar cells. The mitochondrial calcium uniporter (MCU) mediates mitochondrial Ca2+ uptake that regulates bioenergetics and plays an important role in cell survival, damage and death. Aberrant Ca2+ signaling and mitochondrial damage in pancreatic acinar cells have been implicated in the initiation of acute pancreatitis. The primary aim of this study was to assess the involvement of the MCU in experimental acute pancreatitis. We found that pancreatic acinar cells from MCU-/- mice display dramatically reduced mitochondrial Ca2+ uptake. This is consistent with the drastic changes of stimulus-metabolism coupling, manifested by the reduction of mitochondrial NADH/FAD+ responses to cholecystokinin and in the decrease of cholecystokinin-stimulated oxygen consumption. However, in three experimental models of acute pancreatitis (induced by caerulein, taurolithocholic acid 3-sulfate or palmitoleic acid plus ethanol), MCU knockout failed to reduce the biochemical and histological changes characterizing the severity of local and systemic damage. A possible explanation of this surprising finding is the redundancy of damaging mechanisms activated by the inducers of acute pancreatitis.
Collapse
Affiliation(s)
- Michael Chvanov
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
- Correspondence: (M.C.); (A.V.T.); Tel.: +44-(0)15-1794-5357 (M.C.); +44-(0)15-1794-5351 (A.V.T.)
| | - Svetlana Voronina
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Xiaoying Zhang
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - Svetlana Telnova
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Robert Chard
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Yulin Ouyang
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Jane Armstrong
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - Helen Tanton
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Muhammad Awais
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - Diane Latawiec
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - David N. Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Alexei V. Tepikin
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
- Correspondence: (M.C.); (A.V.T.); Tel.: +44-(0)15-1794-5357 (M.C.); +44-(0)15-1794-5351 (A.V.T.)
| |
Collapse
|
19
|
Omsland M, Silic-Benussi M, Moles R, Sarkis S, Purcell DFJ, Yurick D, Khoury G, D'Agostino DM, Ciminale V, Franchini G. Functional properties and sequence variation of HTLV-1 p13. Retrovirology 2020; 17:11. [PMID: 32398094 PMCID: PMC7218495 DOI: 10.1186/s12977-020-00517-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/10/2020] [Indexed: 01/06/2023] Open
Abstract
Human T cell leukemia virus type-1 (HTLV-1) was the first retrovirus found to cause cancer in humans, but the mechanisms that drive the development of leukemia and other diseases associated with HTLV-1 infection remain to be fully understood. This review describes the functional properties of p13, an 87-amino acid protein coded by HTLV-1 open reading frame II (orf-II). p13 is mainly localized in the inner membrane of the mitochondria, where it induces potassium (K+) influx and reactive oxygen species (ROS) production, which can trigger either proliferation or apoptosis, depending on the ROS setpoint of the cell. Recent evidence indicates that p13 may influence the cell’s innate immune response to viral infection and the infected cell phenotype. Association of the HTLV-1 transcriptional activator, Tax, with p13 increases p13’s stability, leads to its partial co-localization with Tax in nuclear speckles, and reduces the ability of Tax to interact with the transcription cofactor CBP/p300. Comparison of p13 sequences isolated from HTLV-1-infected individuals revealed a small number of amino acid variations in the domains controlling the subcellular localization of the protein. Disruptive mutations of p13 were found in samples obtained from asymptomatic patients with low proviral load. p13 sequences of HTLV-1 subtype C isolates from indigenous Australian patients showed a high degree of identity among each other, with all samples containing a pattern of 5 amino acids that distinguished them from other subtypes. Further characterization of p13’s functional properties and sequence variants may lead to a deeper understanding of the impact of p13 as a contributor to the clinical manifestations of HTLV-1 infection.
Collapse
Affiliation(s)
- Maria Omsland
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - David Yurick
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia.,Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padua, Padua, Italy
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Cai LL, Xu HT, Wang QL, Zhang YQ, Chen W, Zheng DY, Liu F, Yuan HB, Li YH, Fu HL. EP4 activation ameliorates liver ischemia/reperfusion injury via ERK1/2‑GSK3β‑dependent MPTP inhibition. Int J Mol Med 2020; 45:1825-1837. [PMID: 32186754 PMCID: PMC7169940 DOI: 10.3892/ijmm.2020.4544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Prostaglandin E receptor subtype 4 (EP4) is widely distributed in the heart, but its role in hepatic ischemia/reperfusion (I/R), particularly in mitochondrial permeability transition pore (MPTP) modulation, is yet to be elucidated. In the present study, an EP4 agonist (CAY10598) was used in a rat model to evaluate the effects of EP4 activation on liver I/R and the mechanisms underlying this. I/R insult upregulated hepatic EP4 expression during early reperfusion. In addition, subcutaneous CAY10598 injection prior to the onset of reperfusion significantly increased hepatocyte cAMP concentrations and decreased serum ALT and AST levels and necrotic and apoptotic cell percentages, after 6 h of reperfusion. Moreover, CAY10598 protected mitochondrial morphology, markedly inhibited mitochondrial permeability transition pore (MPTP) opening and decreased liver reactive oxygen species levels. This occurred via activation of the ERK1/2-GSK3β pathway rather than the janus kinase (JAK)2-signal transducers and activators of transcription (STAT)3 pathway, and resulted in prevention of mitochondria-associated cell injury. The MPTP opener carboxyatractyloside (CATR) and the ERK1/2 inhibitor PD98059 also partially reversed the protective effects of CAY10598 on the liver and mitochondria. The current findings indicate that EP4 activation induces ERK1/2-GSK3β signaling and subsequent MPTP inhibition to provide hepatoprotection, and these observations are informative for developing new molecular targets and preventative therapies for I/R in a clinical setting.
Collapse
Affiliation(s)
- Lin-Lin Cai
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hai-Tao Xu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Qi-Long Wang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Ya-Qing Zhang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Wei Chen
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Dong-Yu Zheng
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Fang Liu
- National Key Laboratory of Medical Immunology and Department of Immunology, Second Military Medical University, Shanghai 200433, P.R. China
| | - Hong-Bin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yong-Hua Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hai-Long Fu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
21
|
Antonucci S, Di Sante M, Sileikyte J, Deveraux J, Bauer T, Bround MJ, Menabò R, Paillard M, Alanova P, Carraro M, Ovize M, Molkentin JD, Cohen M, Forte MA, Bernardi P, Di Lisa F, Murphy E. A novel class of cardioprotective small-molecule PTP inhibitors. Pharmacol Res 2019; 151:104548. [PMID: 31759087 DOI: 10.1016/j.phrs.2019.104548] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
Ischemia/reperfusion (I/R) injury is mediated in large part by opening of the mitochondrial permeability transition pore (PTP). Consequently, inhibitors of the PTP hold great promise for the treatment of a variety of cardiovascular disorders. At present, PTP inhibition is obtained only through the use of drugs (e.g. cyclosporine A, CsA) targeting cyclophilin D (CyPD) which is a key modulator, but not a structural component of the PTP. This limitation might explain controversial findings in clinical studies. Therefore, we investigated the protective effects against I/R injury of small-molecule inhibitors of the PTP (63 and TR002) that do not target CyPD. Both compounds exhibited a dose-dependent inhibition of PTP opening in isolated mitochondria and were more potent than CsA. Notably, PTP inhibition was observed also in mitochondria devoid of CyPD. Compounds 63 and TR002 prevented PTP opening and mitochondrial depolarization induced by Ca2+ overload and by reactive oxygen species in neonatal rat ventricular myocytes (NRVMs). Remarkably, both compounds prevented cell death, contractile dysfunction and sarcomeric derangement induced by anoxia/reoxygenation injury in NRVMs at sub-micromolar concentrations, and were more potent than CsA. Cardioprotection was observed also in adult mouse ventricular myocytes and human iPSc-derived cardiomyocytes, as well as ex vivo in perfused hearts. Thus, this study demonstrates that 63 and TR002 represent novel cardioprotective agents that inhibit PTP opening independent of CyPD targeting.
Collapse
Affiliation(s)
| | - Moises Di Sante
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Justina Sileikyte
- Vollum Institute, and Department of Physiology and Pharmacology, Portland, OR, USA
| | - Jordan Deveraux
- Vollum Institute, and Department of Physiology and Pharmacology, Portland, OR, USA
| | - Tyler Bauer
- Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Michael J Bround
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Roberta Menabò
- Department of Biomedical Sciences, University of Padova, Padova, Italy; National Research Council of Italy (CNR), Padova, Italy
| | - Melanie Paillard
- CarMeN Laboratory, University Claude Bernard Lyon 1, INSA Lyon, Oullins, France
| | - Petra Alanova
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Department of Developmental Cardiology, Institute of Physiology CAS, Prague, Czech Republic
| | - Michela Carraro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Michel Ovize
- CarMeN Laboratory, University Claude Bernard Lyon 1, INSA Lyon, Oullins, France
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA; Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Cohen
- Vollum Institute, and Department of Physiology and Pharmacology, Portland, OR, USA
| | - Michael A Forte
- Vollum Institute, and Department of Physiology and Pharmacology, Portland, OR, USA
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy; National Research Council of Italy (CNR), Padova, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova, Italy; National Research Council of Italy (CNR), Padova, Italy.
| | | |
Collapse
|
22
|
Li W, Cao Z, Yu W, Yao X, Ting R, Cheng F. Acute Kidney Injury Induced by Pneumoperitoneum Pressure Via a Mitochondrial Injury-dependent Mechanism in a Rabbit Model of Different Degrees of Hydronephrosis. Urology 2019; 127:134.e1-134.e7. [PMID: 30790647 DOI: 10.1016/j.urology.2019.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/23/2019] [Accepted: 02/01/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To clarify the effect of mitochondrial injury during laparoscopic surgery of the kidney in different degrees of hydronephrosis in rabbit model. METHODS A total of 90 rabbits were randomly allocated into 3 groups (groups PN, PM, and PS, ie, rabbits without, with mild and with severe hydronephrosis, respectively). The rabbits in the PM group (n = 30) and PS group (n = 30) underwent surgical procedures that induced mild and severe left hydronephrosis, respectively. The rabbits in all the groups were then allocated into 5 subgroups and were subjected to intra-abdominal pressures of 0, 6, 9, 12, and 15 mmHg. Changes in the mitochondrial membrane potential and mitochondrial electron microstructure were observed. The apoptosis proteins cytochrome C, apoptosis-inducing factor, caspase-3, and caspase-9 were measured by western blot analysis. RESULTS As the degrees of hydronephrosis increased, histopathological changes such as the decrease in mitochondrial membrane potential and mitochondrial vacuolization along with increased expression of apoptosis proteins, cytochrome C, apoptosis-inducing factor, caspase-3 gained statistically significance at lower intra-abdominal pressures (In PN and PM groups at 15 mmHg, and in PS group at 9 mmHg; for all P <.01). CONCLUSION Mitochondrial injury plays an important role during acute kidney injury induced by pneumoperitoneal pressure in different degrees of hydronephrosis in the rabbit model.
Collapse
Affiliation(s)
- Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhixiu Cao
- Department of Urology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaobing Yao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rao Ting
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
23
|
Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW, Dibb KM. Calcium in the Pathophysiology of Atrial Fibrillation and Heart Failure. Front Physiol 2018; 9:1380. [PMID: 30337881 PMCID: PMC6180171 DOI: 10.3389/fphys.2018.01380] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Atrial fibrillation (AF) is commonly associated with heart failure. A bidirectional relationship exists between the two-AF exacerbates heart failure causing a significant increase in heart failure symptoms, admissions to hospital and cardiovascular death, while pathological remodeling of the atria as a result of heart failure increases the risk of AF. A comprehensive understanding of the pathophysiology of AF is essential if we are to break this vicious circle. In this review, the latest evidence will be presented showing a fundamental role for calcium in both the induction and maintenance of AF. After outlining atrial electrophysiology and calcium handling, the role of calcium-dependent afterdepolarizations and atrial repolarization alternans in triggering AF will be considered. The atrial response to rapid stimulation will be discussed, including the short-term protection from calcium overload in the form of calcium signaling silencing and the eventual progression to diastolic calcium leak causing afterdepolarizations and the development of an electrical substrate that perpetuates AF. The role of calcium in the bidirectional relationship between heart failure and AF will then be covered. The effects of heart failure on atrial calcium handling that promote AF will be reviewed, including effects on both atrial myocytes and the pulmonary veins, before the aspects of AF which exacerbate heart failure are discussed. Finally, the limitations of human and animal studies will be explored allowing contextualization of what are sometimes discordant results.
Collapse
Affiliation(s)
- Nathan C. Denham
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | - Katharine M. Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|