1
|
de Oliveira SG, Jardim R, Kotowski N, Dávila AMR, Sampaio-Filho HR, Ruiz KGS, Aguiar FHB. The Dentin Microbiome: A Metatranscriptomic Evaluation of Caries-Associated Bacteria. Biomedicines 2025; 13:583. [PMID: 40149560 PMCID: PMC11940310 DOI: 10.3390/biomedicines13030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Dental caries remains a prevalent chronic disease globally, driven by complex interactions between the host, diet, and microbial communities. This study employs a metatranscriptomic RNA-Seq analysis to explore the functional dynamics of the dentin microbiome in both healthy and carious teeth. By examining the transcriptional activity of bacterial communities, we aimed to identify key microbial species and molecular functions associated with caries progression. Methods: Samples from six patients (three healthy and three decayed teeth) were analyzed using the Illumina NovaSeq 2000 platform, with data processed through the SAMSA2 pipeline for taxonomic and functional annotation. Results: The differential expression analysis revealed significant upregulation of Streptococcus and Lactobacillus species, including S. mutans, S. sobrinus, and L. salivarius, in carious samples, highlighting their roles in acid production and carbohydrate metabolism. Additionally, Mycobacterium species, known for their biofilm-forming capabilities and acid tolerance, were upregulated in decayed teeth. The Gene Ontology (GO) enrichment analysis identified unique molecular functions and biological processes in carious teeth, such as carbohydrate metabolism, oxidative stress response, and bacterial cell wall biogenesis, which are critical for microbial survival in acidic environments. In contrast, healthy teeth exhibited functions related to homeostasis and nutrient acquisition, reflecting a balanced microbial community. Conclusions: The study underscores the polymicrobial nature of dental caries, with multiple bacterial species contributing to disease progression through diverse metabolic and stress-response mechanisms. These findings provide deeper insights into the ecological shifts within the oral microbiome during caries development, emphasizing the importance of a functional metatranscriptomic analysis in understanding the pathogenesis of dental caries.
Collapse
Affiliation(s)
- Simone G. de Oliveira
- Piracicaba School of Dentistry, Campinas State University, Piracicaba 13414-903, SP, Brazil; (S.G.d.O.); (K.G.S.R.); (F.H.B.A.)
- School of Dentistry, State University of Rio de Janeiro, Rio de Janeiro 13414-903, RJ, Brazil;
| | - Rodrigo Jardim
- Computational Biology and Systems Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (N.K.); (A.M.R.D.)
| | - Nelson Kotowski
- Computational Biology and Systems Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (N.K.); (A.M.R.D.)
| | - Alberto M. R. Dávila
- Computational Biology and Systems Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (N.K.); (A.M.R.D.)
| | - Hélio R. Sampaio-Filho
- School of Dentistry, State University of Rio de Janeiro, Rio de Janeiro 13414-903, RJ, Brazil;
| | - Karina G. S. Ruiz
- Piracicaba School of Dentistry, Campinas State University, Piracicaba 13414-903, SP, Brazil; (S.G.d.O.); (K.G.S.R.); (F.H.B.A.)
| | - Flávio H. B. Aguiar
- Piracicaba School of Dentistry, Campinas State University, Piracicaba 13414-903, SP, Brazil; (S.G.d.O.); (K.G.S.R.); (F.H.B.A.)
| |
Collapse
|
2
|
Cáceres TM, Patiño LH, Ramírez JD. Understanding Host-Pathogen Interactions in Congenital Chagas Disease Through Transcriptomic Approaches. Pathogens 2025; 14:106. [PMID: 40005483 PMCID: PMC11858232 DOI: 10.3390/pathogens14020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is a parasitic zoonosis with significant health impacts, particularly in Latin America. While traditionally associated with vector-borne transmission, increased migration has expanded its reach into urban and non-endemic regions. Congenital transmission has become a critical route of infection, involving intricate maternal-fetal immune interactions that challenge diagnosis and treatment. This review synthesizes findings from three RNA-seq studies that explore the molecular underpinnings of congenital Chagas disease, emphasizing differentially expressed genes (DEGs) implicated in host-pathogen interactions. The DAVID tool analysis highlighted the overexpression of genes associated with the innate immune response, including pro-inflammatory cytokines that drive chemotaxis and neutrophil activation. Additionally, calcium-dependent pathways critical for parasite invasion were modulated. T. cruzi exploits the maternal-fetal immune axis to establish a tolerogenic environment conducive to congenital transmission. Alterations in placental angiogenesis, cellular regeneration, and metabolic processes further demonstrate the parasite's ability to manipulate host responses for its survival and persistence. These findings underscore the complex interplay between the host and pathogen that facilitates disease progression. Future research integrating transcriptomic, proteomic, and metabolomic approaches is essential to unravel the molecular mechanisms underlying congenital Chagas disease, with a particular focus on the contributions of genetic diversity and non-coding RNAs in immune evasion and disease pathogenesis.
Collapse
Affiliation(s)
- Tatiana M. Cáceres
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (T.M.C.); (L.H.P.)
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (T.M.C.); (L.H.P.)
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (T.M.C.); (L.H.P.)
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Roy A, Chaurasia H, Kumar B, Kumari N, Jaiswal S, Srivastava M, Iquebal MA, Angadi UB, Kumar D. FEAtl: a comprehensive web-based expression atlas for functional genomics in tropical and subtropical fruit crops. BMC PLANT BIOLOGY 2024; 24:890. [PMID: 39343895 PMCID: PMC11440752 DOI: 10.1186/s12870-024-05595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Fruit crops, including tropical and subtropical fruits like Avocado (Persea americana), Fig (Ficus carica), Date Palm (Phoenix dactylifera), Mango (Mangifera indica), Guava (Psidium guajava), Papaya (Carica papaya), Pineapple (Ananas comosus), and Banana (Musa acuminata) are economically vital, contributing significantly to global agricultural output, as classified by the FAO's World Programme for the Census of Agriculture. Advancements in next-generation sequencing, have transformed fruit crop breeding by providing in-depth genomic and transcriptomic data. RNA sequencing enables high-throughput analysis of gene expression, and functional genomics, crucial for addressing horticultural challenges and enhancing fruit production. The genomic and expression data for key tropical and sub-tropical fruit crops is currently lacking a comprehensive expression atlas, revealing a significant gap in resources for horticulturists who require a unified platform with diverse datasets across various conditions and cultivars. RESULTS The Fruit Expression Atlas (FEAtl), available at http://backlin.cabgrid.res.in/FEAtl/ , is a first-ever extensive and unified expression atlas for tropical and subtropical fruit crops developed using 3-tier architecture. The expressivity of coding and non-coding genes, encompassing 2,060 RNA-Seq samples across 91 tissue types and 177 BioProjects, it provides a comprehensive view of gene expression patterns for different tissues under various conditions. FEAtl features multiple tabs that cater to different aspects of the dataset, namely, Home, About, Analyze, Statistics, and Team and contains seven central functional modules: Transcript Information,Sample Information, Expression Profiles in FPKM and TPM, Functional Analysis, Genes Based on Tau Score, and Search for Specific Gene. The expression of a transcript of interest can be easily queried by searching by tissue ID and transcript type. Expression data can be displayed as a heat map, along with functional descriptions as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. CONCLUSIONS This atlas represents a groundbreaking compilation of a wide array of information pertaining to eight distinct fruit crops and serves as a fundamental resource for comparative analysis among different fruit species and is a catalyst for functional genomic studies. Database availability: http://backlin.cabgrid.res.in/FEAtl/ .
Collapse
Affiliation(s)
- Anupama Roy
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Himanshushekhar Chaurasia
- Mechanical Processing Division (MPD), ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, 400019, India
| | - Baibhav Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Naina Kumari
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manish Srivastava
- Division of Fruits and Horticultural Technology (FHT), ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Ulavappa B Angadi
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
4
|
Parsley MB, Goldberg CS. Environmental RNA can distinguish life stages in amphibian populations. Mol Ecol Resour 2024; 24:e13857. [PMID: 37593778 DOI: 10.1111/1755-0998.13857] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Applications of environmental DNA (eDNA) analysis methods for biomonitoring have grown exponentially over the last decade and provide a wealth of new information on the distribution of species. However, eDNA methods have limited application for estimating population-level metrics. Environmental RNA (eRNA) has the potential to address ecological questions by gathering population demographic information from environmental media but may be challenging to detect and analyze. We developed gene-specific eRNA assays targeting keratin-associated genes in two focal species, American bullfrogs (Lithobates catesbeianus) and tiger salamanders (Ambystoma mavortium) to answer an important question in amphibian management: whether species detections represent breeding populations versus transitory adults. We performed an extensive laboratory validation with amphibians housed across development stages, where we collected 95 and 127 environmental samples for bullfrogs and salamanders, respectively. Both assays were highly specific to the larval stage and amplified with high sensitivity (90% in bullfrog and 88.4% in tiger salamander samples). We then applied our validated assays to multiple natural systems. When larvae were present, we found 74.1% overall detection in bullfrog field samples and 70.8% and 48.5% overall detection in field samples from ponds with A. macrodactylum and A. californiense larvae, correlating with eDNA detection rates. When only adults were present, we did not detect larvae-specific eRNA in A. macrodactylum ponds, despite high eDNA detection rates. Although much work is ahead for optimizing assay design, sampling and filtering methods, we demonstrate that eRNA can successfully be used to discern life stages with direct application for ecology and conservation management.
Collapse
Affiliation(s)
- Meghan B Parsley
- School of the Environment, Washington State University, Pullman, Washington, USA
| | - Caren S Goldberg
- School of the Environment, Washington State University, Pullman, Washington, USA
| |
Collapse
|
5
|
Yang JO, Zinter MS, Pellegrini M, Wong MY, Gala K, Markovic D, Nadel B, Peng K, Do N, Mangul S, Nadkarni VM, Karlsberg A, Deshpande D, Butte MJ, Asaro L, Agus M, Sapru A. Whole blood transcriptomics identifies subclasses of pediatric septic shock. Crit Care 2023; 27:486. [PMID: 38066613 PMCID: PMC10709863 DOI: 10.1186/s13054-023-04689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Sepsis is a highly heterogeneous syndrome, which has hindered the development of effective therapies. This has prompted investigators to develop a precision medicine approach aimed at identifying biologically homogenous subgroups of patients with septic shock and critical illnesses. Transcriptomic analysis can identify subclasses derived from differences in underlying pathophysiological processes that may provide the basis for new targeted therapies. The goal of this study was to elucidate pathophysiological pathways and identify pediatric septic shock subclasses based on whole blood RNA expression profiles. METHODS The subjects were critically ill children with cardiopulmonary failure who were a part of a prospective randomized insulin titration trial to treat hyperglycemia. Genome-wide expression profiling was conducted using RNA sequencing from whole blood samples obtained from 46 children with septic shock and 52 mechanically ventilated noninfected controls without shock. Patients with septic shock were allocated to subclasses based on hierarchical clustering of gene expression profiles, and we then compared clinical characteristics, plasma inflammatory markers, cell compositions using GEDIT, and immune repertoires using Imrep between the two subclasses. RESULTS Patients with septic shock depicted alterations in innate and adaptive immune pathways. Among patients with septic shock, we identified two subtypes based on gene expression patterns. Compared with Subclass 2, Subclass 1 was characterized by upregulation of innate immunity pathways and downregulation of adaptive immunity pathways. Subclass 1 had significantly worse clinical outcomes despite the two classes having similar illness severity on initial clinical presentation. Subclass 1 had elevated levels of plasma inflammatory cytokines and endothelial injury biomarkers and demonstrated decreased percentages of CD4 T cells and B cells and less diverse T cell receptor repertoires. CONCLUSIONS Two subclasses of pediatric septic shock patients were discovered through genome-wide expression profiling based on whole blood RNA sequencing with major biological and clinical differences. Trial Registration This is a secondary analysis of data generated as part of the observational CAF-PINT ancillary of the HALF-PINT study (NCT01565941). Registered March 29, 2012.
Collapse
Affiliation(s)
- Jamie O Yang
- UCLA Department of Internal Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Matt S Zinter
- UCSF Department of Pediatrics, San Francisco, CA, USA
| | - Matteo Pellegrini
- UCLA Department of Molecular, Cell, and Developmental Biology, Los Angeles, CA, USA
| | - Man Yee Wong
- Division of Pediatric Critical Care, UCLA Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Kinisha Gala
- Division of Pediatric Critical Care, UCLA Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Daniela Markovic
- UCLA Department of Medicine Statistics Core, Los Angeles, CA, USA
| | - Brian Nadel
- USC Department of Clinical Pharmacy, USC Alfred E Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, USA
| | - Kerui Peng
- USC Department of Clinical Pharmacy, USC Alfred E Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, USA
| | - Nguyen Do
- Division of Pediatric Critical Care, UCLA Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Serghei Mangul
- USC Department of Clinical Pharmacy, USC Alfred E Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, USA
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron Karlsberg
- USC Department of Clinical Pharmacy, USC Alfred E Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, USA
| | - Dhrithi Deshpande
- USC Department of Clinical Pharmacy, USC Alfred E Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, USA
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, UCLA Department of Pediatrics, Los Angeles, CA, USA
| | - Lisa Asaro
- Department of Pediatrics, Division of Medical Critical Care, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Agus
- Department of Pediatrics, Division of Medical Critical Care, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anil Sapru
- Division of Pediatric Critical Care, UCLA Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Yang JO, Zinter MS, Pellegrini M, Wong MY, Gala K, Markovic D, Nadel B, Peng K, Do N, Mangul S, Nadkarni VM, Karlsberg A, Deshpande D, Butte MJ, Asaro L, Agus M, Sapru A. Whole Blood Transcriptomics Identifies Subclasses of Pediatric Septic Shock. RESEARCH SQUARE 2023:rs.3.rs-3267057. [PMID: 37693502 PMCID: PMC10491329 DOI: 10.21203/rs.3.rs-3267057/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Sepsis is a highly heterogeneous syndrome, that has hindered the development of effective therapies. This has prompted investigators to develop a precision medicine approach aimed at identifying biologically homogenous subgroups of patients with septic shock and critical illnesses. Transcriptomic analysis can identify subclasses derived from differences in underlying pathophysiological processes that may provide the basis for new targeted therapies. The goal of this study was to elucidate pathophysiological pathways and identify pediatric septic shock subclasses based on whole blood RNA expression profiles. Methods The subjects were critically ill children with cardiopulmonary failure who were a part of a prospective randomized insulin titration trial to treat hyperglycemia. Genome-wide expression profiling was conducted using RNA-sequencing from whole blood samples obtained from 46 children with septic shock and 52 mechanically ventilated noninfected controls without shock. Patients with septic shock were allocated to subclasses based on hierarchical clustering of gene expression profiles, and we then compared clinical characteristics, plasma inflammatory markers, cell compositions using GEDIT, and immune repertoires using Imrep between the two subclasses. Results Patients with septic shock depicted alterations in innate and adaptive immune pathways. Among patients with septic shock, we identified two subtypes based on gene expression patterns. Compared with Subclass 2, Subclass 1 was characterized by upregulation of innate immunity pathways and downregulation of adaptive immunity pathways. Subclass 1 had significantly worse clinical outcomes despite the two classes having similar illness severity on initial clinical presentation. Subclass 1 had elevated levels of plasma inflammatory cytokines and endothelial injury biomarkers and demonstrated decreased percentages of CD4 T cells and B cells, and less diverse T-Cell receptor repertoires. Conclusions Two subclasses of pediatric septic shock patients were discovered through genome-wide expression profiling based on whole blood RNA sequencing with major biological and clinical differences. Trial Registration This is a secondary analysis of data generated as part of the observational CAF PINT ancillary of the HALF PINT study (NCT01565941). Registered 29 March 2012.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nguyen Do
- University of California, Los Angeles
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kowalski TW, Feira MF, Lord VO, Gomes JDA, Giudicelli GC, Fraga LR, Sanseverino MTV, Recamonde-Mendoza M, Schuler-Faccini L, Vianna FSL. A New Strategy for the Old Challenge of Thalidomide: Systems Biology Prioritization of Potential Immunomodulatory Drug (IMiD)-Targeted Transcription Factors. Int J Mol Sci 2023; 24:11515. [PMID: 37511270 PMCID: PMC10380514 DOI: 10.3390/ijms241411515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Several molecular mechanisms of thalidomide embryopathy (TE) have been investigated, from anti-angiogenesis to oxidative stress to cereblon binding. Recently, it was discovered that thalidomide and its analogs, named immunomodulatory drugs (IMiDs), induced the degradation of C2H2 transcription factors (TFs). This mechanism might impact the strict transcriptional regulation of the developing embryo. Hence, this study aims to evaluate the TFs altered by IMiDs, prioritizing the ones associated with embryogenesis through transcriptome and systems biology-allied analyses. This study comprises only the experimental data accessed through bioinformatics databases. First, proteins and genes reported in the literature as altered/affected by the IMiDs were annotated. A protein systems biology network was evaluated. TFs beta-catenin (CTNNB1) and SP1 play more central roles: beta-catenin is an essential protein in the network, while SP1 is a putative C2H2 candidate for IMiD-induced degradation. Separately, the differential expressions of the annotated genes were analyzed through 23 publicly available transcriptomes, presenting 8624 differentially expressed genes (2947 in two or more datasets). Seventeen C2H2 TFs were identified as related to embryonic development but not studied for IMiD exposure; these TFs are potential IMiDs degradation neosubstrates. This is the first study to suggest an integration of IMiD molecular mechanisms through C2H2 TF degradation.
Collapse
Affiliation(s)
- Thayne Woycinck Kowalski
- Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Biomedical Sciences Course, Centro Universitário CESUCA, Cachoeirinha 94935-630, Brazil
| | - Mariléa Furtado Feira
- Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Vinícius Oliveira Lord
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Biomedical Sciences Course, Centro Universitário CESUCA, Cachoeirinha 94935-630, Brazil
| | - Julia do Amaral Gomes
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Giovanna Câmara Giudicelli
- Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Lucas Rosa Fraga
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Post-Graduation Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
- Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
| | - Maria Teresa Vieira Sanseverino
- Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Post-Graduation Program in Computer Science, Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Lavinia Schuler-Faccini
- Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Fernanda Sales Luiz Vianna
- Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Post-Graduation Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| |
Collapse
|
8
|
TP53-Status-Dependent Oncogenic EZH2 Activity in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14143451. [PMID: 35884510 PMCID: PMC9320674 DOI: 10.3390/cancers14143451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Epigenetic alterations contribute to the aggressiveness and therapy resistance of Pancreatic Ductal Adenocarcinoma (PDAC). However, epigenetic regulators, including Enhancer of Zeste Homolog 2 (EZH2), reveal a strong context-dependent activity. Our study aimed to examine the context-defining molecular prerequisites of oncogenic EZH2 activity in PDAC to assess the therapeutic efficacy of targeting EZH2. Our preclinical study using diverse PDAC models demonstrates that the TP53 status determines oncogenic EZH2 activity. Only in TP53-wildtype (wt) PDAC subtypes was EZH2 blockade associated with a favorable PDAC prognosis mainly through cell-death response. We revealed that EZH2 depletion increases p53wt stability by the de-repression of CDKN2A. Therefore, our study provides preclinical evidence that an intact CDKN2A-p53wt axis is indispensable for a beneficial outcome of EZH2 depletion and highlights the significance of molecular stratification to improve epigenetic targeting in PDAC. Abstract Pancreatic Ductal Adenocarcinoma (PDAC) represents a lethal malignancy with a consistently poor outcome. Besides mutations in PDAC driver genes, the aggressive tumor biology of the disease and its remarkable therapy resistance are predominantly installed by potentially reversible epigenetic dysregulation. However, epigenetic regulators act in a context-dependent manner with opposing implication on tumor progression, thus critically determining the therapeutic efficacy of epigenetic targeting. Herein, we aimed at exploring the molecular prerequisites and underlying mechanisms of oncogenic Enhancer of Zeste Homolog 2 (EZH2) activity in PDAC progression. Preclinical studies in EZH2 proficient and deficient transgenic and orthotopic in vivo PDAC models and transcriptome analysis identified the TP53 status as a pivotal context-defining molecular cue determining oncogenic EZH2 activity in PDAC. Importantly, the induction of pro-apoptotic gene signatures and processes as well as a favorable PDAC prognosis upon EZH2 depletion were restricted to p53 wildtype (wt) PDAC subtypes. Mechanistically, we illustrate that EZH2 blockade de-represses CDKN2A transcription for the subsequent posttranslational stabilization of p53wt expression and function. Together, our findings suggest an intact CDKN2A-p53wt axis as a prerequisite for the anti-tumorigenic consequences of EZH2 depletion and emphasize the significance of molecular stratification for the successful implementation of epigenetic targeting in PDAC.
Collapse
|
9
|
Liu J, Xia C, Wang G. Multi-Omics Analysis in Initiation and Progression of Meningiomas: From Pathogenesis to Diagnosis. Front Oncol 2020; 10:1491. [PMID: 32983987 PMCID: PMC7484374 DOI: 10.3389/fonc.2020.01491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022] Open
Abstract
Meningiomas are common intracranial tumors that can be cured by surgical resection in most cases. However, the most disconcerting is high-grade meningiomas, which frequently recur despite initial successful treatment, eventually conferring poor prognosis. Therefore, the early diagnosis and classification of meningioma is necessary for the subsequent intervention and an improved prognosis. A growing body of evidence demonstrates the potential of multi-omics study (including genomics, transcriptomics, epigenomics, proteomics) for meningioma diagnosis and mechanistic links to potential pathological mechanism. This thesis addresses a neglected aspect of recent advances in the field of meningiomas at multiple omics levels, highlighting that the integration of multi-omics can reveal the mechanism of meningiomas, which provides a timely and necessary scientific basis for the treatment of meningiomas.
Collapse
Affiliation(s)
- Jiachen Liu
- Clinical Medicine, Xiangya Medical College of Central South University, Changsha, China
| | - Congcong Xia
- Clinical Medicine, Xiangya Medical College of Central South University, Changsha, China
| | - Gaiqing Wang
- Department of Neurology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya, China
| |
Collapse
|
10
|
Van Vleet TR, Liguori MJ, Lynch JJ, Rao M, Warder S. Screening Strategies and Methods for Better Off-Target Liability Prediction and Identification of Small-Molecule Pharmaceuticals. SLAS DISCOVERY 2018; 24:1-24. [PMID: 30196745 DOI: 10.1177/2472555218799713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pharmaceutical discovery and development is a long and expensive process that, unfortunately, still results in a low success rate, with drug safety continuing to be a major impedance. Improved safety screening strategies and methods are needed to more effectively fill this critical gap. Recent advances in informatics are now making it possible to manage bigger data sets and integrate multiple sources of screening data in a manner that can potentially improve the selection of higher-quality drug candidates. Integrated screening paradigms have become the norm in Pharma, both in discovery screening and in the identification of off-target toxicity mechanisms during later-stage development. Furthermore, advances in computational methods are making in silico screens more relevant and suggest that they may represent a feasible option for augmenting the current screening paradigm. This paper outlines several fundamental methods of the current drug screening processes across Pharma and emerging techniques/technologies that promise to improve molecule selection. In addition, the authors discuss integrated screening strategies and provide examples of advanced screening paradigms.
Collapse
Affiliation(s)
- Terry R Van Vleet
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Michael J Liguori
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - James J Lynch
- 2 Department of Integrated Science and Technology, AbbVie, N Chicago, IL, USA
| | - Mohan Rao
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Scott Warder
- 3 Department of Target Enabling Science and Technology, AbbVie, N Chicago, IL, USA
| |
Collapse
|