1
|
Swanson IM, Haralambieva IH, Rasche MM, Ovsyannikova IG, Kennedy RB. Frequencies of SARS-CoV-2 Spike Protein-Specific Memory B Cells in Human PBMCs, Quantified by ELISPOT Assay. Methods Mol Biol 2024; 2768:153-166. [PMID: 38502393 DOI: 10.1007/978-1-0716-3690-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Vaccination against SARS-CoV-2 with coronavirus vaccines that elicit protective immune responses is critical to the prevention of severe disease and mortality associated with SARS-CoV-2 infection. Understanding the adaptive immune responses to SARS-CoV-2 infection and/or vaccination will continue to aid in the development of next-generation vaccines. Studies have shown the important role of SARS-CoV-2-specific antibodies for both disease resolution and prevention of COVID-19 serious sequelae following vaccination. However, antibody responses are short-lived, highlighting the importance of studying antigen-specific B-cell responses to better understand durable immunity and immunologic memory. Since the spike protein is the main target of antibody-producing B cells, we developed a SARS-CoV-2 memory B cell ELISPOT assay to measure the frequencies of spike-specific B cells after COVID-19 infection and/or vaccination. Here, we describe in detail the methodology for using this ELISPOT assay to quantify SARS-CoV-2 spike-specific memory B cells produced by infection and/or vaccination in human PBMC samples. Application of this assay may help better understand and predict SARS-CoV-2 recall immune responses and to develop potential B cell correlates of protection at the methodological level.
Collapse
Affiliation(s)
- Ilya M Swanson
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Thébault P, Cailhier JF, Lapointe R. Blood Sample Processing and Banking for Functional and Molecular Analyses. Methods Mol Biol 2023; 2614:37-46. [PMID: 36587117 DOI: 10.1007/978-1-0716-2914-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Immune monitoring of circulating immune cells in the blood provides insight into a patient's own immune response over the course of a treatment or disease progression. Information such as whether immune cells are functional or non-functional and what specific proteins they express or secrete can be essential to understand if (and how) a treatment is working or a disease is progressing. To do so, it requires careful handling and storage of precious biological samples with the goals of obtaining a large amount of information from limited samples and minimizing future research costs by the use of banked samples. Many factors, including blood sample types, time of collection, containers used, preservatives and other additives, transport means, and length of transit time, all affect the quality of the samples and the stability of biomarkers and must be considered at the initial collection stage. An efficient study design includes provisions for further processing of the original samples, such as cryopreservation of isolated cells, purification of DNA and RNA, and preparation of specimens for genomic, immunological, and biochemical analyses. Development of standard operating procedures and quality control plans is a safeguard of the samples' quality and of the validity of the results. Here, we focus on the collection and processing of blood suitable for plasma and peripheral blood mononuclear cell (PBMC) banking, including collection, processing, and storage of samples, based on our experience.
Collapse
Affiliation(s)
- Paméla Thébault
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Institut du cancer de Montréal, Montréal, QC, Canada
| | - Jean-François Cailhier
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Institut du cancer de Montréal, Montréal, QC, Canada.,Faculté de Médecine, Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Réjean Lapointe
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada. .,Institut du cancer de Montréal, Montréal, QC, Canada. .,Faculté de Médecine, Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Haralambieva IH, Monroe JM, Ovsyannikova IG, Grill DE, Poland GA, Kennedy RB. Distinct Homologous and Variant-Specific Memory B-Cell and Antibody Response Over Time after SARS-CoV-2 mRNA Vaccination. J Infect Dis 2022; 226:23-31. [PMID: 35137144 PMCID: PMC8903425 DOI: 10.1093/infdis/jiac042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
The durability of protective humoral immunity after SARS-CoV-2 vaccination and infection is largely dependent on the generation and persistence of antigen-specific isotype-switched memory B cells (MBCs) and long-lived plasma cells that reside in the bone marrow and secrete high-affinity neutralizing antibodies. The reactivity of vaccine-induced MBCs to emerging clinically significant SARS-CoV-2 variants of concern (VoCs) is largely unknown. In a longitudinal cohort study (up to 6 months following COVID-19 mRNA vaccination) we measured MBCs in concert with other functional antibody measures. We found statistically significant differences between the frequencies of MBCs responding to homologous and VoC receptor-binding domain/RBDs (Beta, Gamma, and Delta) after vaccination that persisted over time. In concert with a waning antibody response, the reduced MBC response to VoCs could translate to a weaker subsequent recall immune response and increased susceptibility to the emerging SARS-CoV-2 variant strains after vaccination.
Collapse
Affiliation(s)
- Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Jonathon M Monroe
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Diane E Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Haralambieva IH, Eberhard KG, Ovsyannikova IG, Grill DE, Schaid DJ, Kennedy RB, Poland GA. Transcriptional signatures associated with rubella virus-specific humoral immunity after a third dose of MMR vaccine in women of childbearing age. Eur J Immunol 2021; 51:1824-1838. [PMID: 33818775 PMCID: PMC9841595 DOI: 10.1002/eji.202049054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/03/2021] [Accepted: 12/17/2020] [Indexed: 01/19/2023]
Abstract
Multiple factors linked to host genetics/inherent biology play a role in interindividual variability in immune response outcomes after rubella vaccination. In order to identify these factors, we conducted a study of rubella-specific humoral immunity before (Baseline) and after (Day 28) a third dose of MMR-II vaccine in a cohort of 109 women of childbearing age. We performed mRNA-Seq profiling of PBMCs after rubella virus in vitro stimulation to delineate genes associated with post-vaccination rubella humoral immunity and to define genes mediating the association between prior immune response status (high or low antibody) and subsequent immune response outcome. Our study identified novel genes that mediated the association between prior immune response and neutralizing antibody titer after a third MMR vaccine dose. These genes included the following: CDC34; CSNK1D; APOBEC3F; RAD18; AAAS; SLC37A1; FAS; and JAK2. The encoded proteins are involved in innate antiviral response, IFN/cytokine signaling, B cell repertoire generation, the clonal selection of B lymphocytes in germinal centers, and somatic hypermutation/antibody affinity maturation to promote optimal antigen-specific B cell immune function. These data advance our understanding of how subjects' prior immune status and/or genetic propensity to respond to rubella/MMR vaccination ultimately affects innate immunity and humoral immune outcomes after vaccination.
Collapse
Affiliation(s)
| | | | | | - Diane E. Grill
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J. Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Crooke SN, Riggenbach MM, Ovsyannikova IG, Warner ND, Chen MH, Hao L, Icenogle JP, Poland GA, Kennedy RB. Durability of humoral immune responses to rubella following MMR vaccination. Vaccine 2020; 38:8185-8193. [PMID: 33190948 DOI: 10.1016/j.vaccine.2020.10.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND While administration of the measles-mumps-rubella (MMR-II®) vaccine has been effective at preventing rubella infection in the United States, the durability of humoral immunity to the rubella component of MMR vaccine has not been widely studied among older adolescents and adults. METHODS In this longitudinal study, we sought to assess the durability of rubella virus (RV)-specific humoral immunity in a healthy population (n = 98) of adolescents and young adults at two timepoints: ~7 and ~17 years after two doses of MMR-II® vaccination. Levels of circulating antibodies specific to RV were measured by ELISA and an immune-colorimetric neutralization assay. RV-specific memory B cell responses were also measured by ELISpot. RESULTS Rubella-specific IgG antibody titers, neutralizing antibody titers, and memory B cell responses declined with increasing time since vaccination; however, these decreases were relatively moderate. Memory B cell responses exhibited a greater decline in men compared to women. CONCLUSIONS Collectively, rubella-specific humoral immunity declines following vaccination, although subjects' antibody titers remain well above the currently recognized threshold for protective immunity. Clinical correlates of protection based on neutralizing antibody titer and memory B cell ELISpot response should be defined.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | | | | | - Nathaniel D Warner
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Min-Hsin Chen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lijuan Hao
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph P Icenogle
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Haralambieva IH, Ovsyannikova IG, Kennedy RB, Goergen KM, Grill DE, Chen MH, Hao L, Icenogle J, Poland GA. Rubella virus-specific humoral immune responses and their interrelationships before and after a third dose of measles-mumps-rubella vaccine in women of childbearing age. Vaccine 2019; 38:1249-1257. [PMID: 31732325 DOI: 10.1016/j.vaccine.2019.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/06/2023]
Abstract
In the U.S., measles, mumps, and rubella vaccination is recommended as two vaccine doses. A third dose of measles-mumps-rubella (MMR) vaccine is being administered in certain situations (e.g., identified seronegativity and during outbreaks). We studied rubella-specific humoral immunity (neutralizing antibody, enzyme-linked immunosorbent assay/ELISA IgG titer and antibody avidity) and the frequencies of antigen-specific memory B cells before and after a third dose of MMR-II in 109 female participants of childbearing age (median age, 34.5 years old) from Olmsted County, MN, with two documented prior MMR vaccine doses. The participants were selected from a cohort of 1117 individuals if they represented the high and the low ends of the rubella-specific antibody response spectrum. Of the 109 participants, we identified four individuals (3.67% of all study participants; 7.14% of the low-responder group) that were seronegative at Baseline (rubella-specific ELISA IgG titers <10 IU/mL), suggesting a lack of protection against rubella before receipt of a third MMR vaccine dose. The peak geometric mean neutralizing antibody titer one month following the third dose of MMR vaccine for the cohort was 243 NT50 (CI; 241, 245), which is expected for a cohort with two doses of MMR, and the peak geometric mean IgG titer was 150 IU/mL (CI; 148, 152) with no seronegative individuals at Day 28. One-third of all subjects (31.8% for the neutralizing antibody; 30.8% for the IgG titer) experienced a significant boost (≥4-fold) of antibody titers one month following vaccination. Antibody titers and other tested immune-response variables were significantly higher in the high-responder group compared to the low-responder group. The frequencies of rubella-specific memory B cells were modestly associated with the antibody titers. Our study suggests the importance of yet unknown inherent biologic and immune factors for the generation and maintenance of rubella-vaccine-induced humoral immune responses.
Collapse
Affiliation(s)
| | | | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Krista M Goergen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Diane E Grill
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Min-Hsin Chen
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta 30333, Georgia
| | - Lijuan Hao
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta 30333, Georgia
| | - Joseph Icenogle
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta 30333, Georgia
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|