1
|
Jahnmatz P, Sundling C, Yman V, Widman L, Asghar M, Sondén K, Stenström C, Smedman C, Ndungu F, Ahlborg N, Färnert A. Memory B-Cell Responses Against Merozoite Antigens After Acute Plasmodium falciparum Malaria, Assessed Over One Year Using a Novel Multiplexed FluoroSpot Assay. Front Immunol 2021; 11:619398. [PMID: 33679707 PMCID: PMC7928423 DOI: 10.3389/fimmu.2020.619398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022] Open
Abstract
Memory B cells (MBCs) are believed to be important for the maintenance of immunity to malaria, and these cells need to be explored in the context of different parasite antigens and their breadth and kinetics after natural infections. However, frequencies of antigen-specific MBCs are low in peripheral blood, limiting the number of antigens that can be studied, especially when small blood volumes are available. Here, we developed a multiplexed reversed B-cell FluoroSpot assay capable of simultaneously detecting MBCs specific for the four Plasmodium falciparum blood-stage antigens, MSP-119, MSP-2, MSP-3 and AMA-1. We used the assay to study the kinetics of the MBC response after an acute episode of malaria and up to one year following treatment in travelers returning to Sweden from sub-Saharan Africa. We show that the FluoroSpot assay can detect MBCs to all four merozoite antigens in the same well, and that the breadth and kinetics varied between individuals. We further found that individuals experiencing a primary infection could mount and maintain parasite-specific MBCs to a similar extent as previously exposed adults, already after a single infection. We conclude that the multiplexed B-cell FluoroSpot is a powerful tool for assessing antigen-specific MBC responses to several antigens simultaneously, and that the kinetics of MBC responses against merozoite surface antigens differ over the course of one year. These findings contribute to the understanding of acquisition and maintenance of immune responses to malaria.
Collapse
Affiliation(s)
- Peter Jahnmatz
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Stockholm, Sweden.,Mabtech AB, Nacka Strand, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Stockholm, Sweden
| | - Linnea Widman
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christine Stenström
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Francis Ndungu
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Stockholm, Sweden.,Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Niklas Ahlborg
- Mabtech AB, Nacka Strand, Sweden.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Immune Response Persistence and Safety of a Booster Dose of the Tetravalent Dengue Vaccine in Adolescents and Adults Who Previously Completed the 3-dose Schedule 4-5 Years Earlier in Latin America: A Randomized Placebo-controlled Trial. Pediatr Infect Dis J 2020; 39:961-968. [PMID: 32932330 DOI: 10.1097/inf.0000000000002830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND We previously described an increased immune response 28 days after a booster dose of the live, attenuated, tetravalent dengue vaccine (CYD-TDV) in healthy adolescents and adults in Latin America (CYD64, NCT02623725). This follow-up study evaluated immune response persistence and safety of a CYD-TDV booster dose up to Month (M) 24 post-booster. METHODS This study included 250 participants who previously received 3 primary doses of CYD-TDV in the CYD13 (NCT00993447) and CYD30 (NCT01187433) studies, and who were randomized 4-5 years later to receive a CYD-TDV booster or placebo (3:1). Dengue neutralizing antibodies against the parental dengue virus strains were assessed using the plaque reduction neutralization test (PRNT50) at M6, M12, and M24 post-booster. Post-booster memory B-cell responses were assessed in a subset of participants using the FluoroSpot assay up to M12 post-booster. RESULTS In the CYD-TDV group (n = 187), dengue neutralizing antibody geometric mean titers (GMTs) declined from the peak at day 28 through to M24 for all serotypes. GMTs at M24 were similar to those at pre-booster among baseline dengue seropositives. A similar trend was observed for baseline dengue seronegatives, albeit at a lower magnitude. Previous vaccination-induced detectable B-cell memory responses in seropositives and seronegatives that decreased to pre-booster levels at M12 post-booster. The CYD-TDV booster dose was well-tolerated. CONCLUSIONS In baseline dengue seropositives, following a CYD-TDV booster dose administered 4-5 years after primary immunization, dengue neutralizing antibody GMTs and B-cell memory responses peaked in the short-term before gradually decreasing over time. A CYD-TDV booster dose could improve protection against dengue during outbreak periods.
Collapse
|