1
|
Bulteau R, Barbier L, Lamour G, Piolot T, Labrune E, Campillo C, Terret ME. Mechanical Characterization of Murine Oocytes by Atomic Force Microscopy. Methods Mol Biol 2024; 2740:117-124. [PMID: 38393472 DOI: 10.1007/978-1-0716-3557-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The quality of murine and human oocytes correlates to their mechanical properties, which are tightly regulated to reach the blastocyst stage after fertilization. Oocytes are nonadherent spherical cells with a diameter over 80 μm. Their mechanical properties have been studied in our lab and others using the micropipette aspiration technique, particularly to obtain the oocyte cortical tension. Micropipette aspiration is affordable but has a low throughput and induces cell-scale deformation. Here we present a step-by-step protocol to characterize the mechanical properties of oocytes using atomic force microscopy (AFM), which is minimally invasive and has a much higher throughput. We used electron microscopy grids to immobilize oocytes. This allowed us to obtain local and reproducible measurements of the cortical tension of murine oocytes during their meiotic divisions. Cortical tension values obtained by AFM are in agreement with the ones previously obtained by micropipette aspiration. Our protocol could help characterize the biophysical properties of oocytes or other types of large nonadherent samples in fundamental and medical research.
Collapse
Affiliation(s)
- Rose Bulteau
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Paris, France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Lucie Barbier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Tristan Piolot
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Elsa Labrune
- Hospices Civils de Lyon, Service de Médecine de la Reproduction, Bron, France
- Faculté de Médecine, Université Claude Bernard Lyon 1, Lyon, France
- INSERM U1208, Stem Cells and Brain Institute, Bron, France
| | - Clément Campillo
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Paris, France.
- Institut Universitaire de France (IUF), Paris, France.
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
2
|
Artificially decreasing cortical tension generates aneuploidy in mouse oocytes. Nat Commun 2020; 11:1649. [PMID: 32245998 PMCID: PMC7125192 DOI: 10.1038/s41467-020-15470-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/10/2020] [Indexed: 01/28/2023] Open
Abstract
Human and mouse oocytes’ developmental potential can be predicted by their mechanical properties. Their development into blastocysts requires a specific stiffness window. In this study, we combine live-cell and computational imaging, laser ablation, and biophysical measurements to investigate how deregulation of cortex tension in the oocyte contributes to early developmental failure. We focus on extra-soft cells, the most common defect in a natural population. Using two independent tools to artificially decrease cortical tension, we show that chromosome alignment is impaired in extra-soft mouse oocytes, despite normal spindle morphogenesis and dynamics, inducing aneuploidy. The main cause is a cytoplasmic increase in myosin-II activity that could sterically hinder chromosome capture. We describe here an original mode of generation of aneuploidies that could be very common in oocytes and could contribute to the high aneuploidy rate observed during female meiosis, a leading cause of infertility and congenital disorders. The developmental potential of human and murine oocytes is predicted by their mechanical properties. Here the authors show that artificial reduction of cortex tension produces aneuploid mouse oocytes and speculate that this may contribute to the high aneuploidy rate typical of female meiosis.
Collapse
|