1
|
De Serres-Bérard T, Ait Benichou S, Jauvin D, Boutjdir M, Puymirat J, Chahine M. Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:13359. [PMID: 36362145 PMCID: PMC9657934 DOI: 10.3390/ijms232113359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a dominant genetic disease in which the expansion of long CTG trinucleotides in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene results in toxic RNA gain-of-function and gene mis-splicing affecting mainly the muscles, the heart, and the brain. The CUG-expanded transcripts are a suitable target for the development of antisense oligonucleotide (ASO) therapies. Various chemical modifications of the sugar-phosphate backbone have been reported to significantly enhance the affinity of ASOs for RNA and their resistance to nucleases, making it possible to reverse DM1-like symptoms following systemic administration in different transgenic mouse models. However, specific tissue delivery remains to be improved to achieve significant clinical outcomes in humans. Several strategies, including ASO conjugation to cell-penetrating peptides, fatty acids, or monoclonal antibodies, have recently been shown to improve potency in muscle and cardiac tissues in mice. Moreover, intrathecal administration of ASOs may be an advantageous complementary administration route to bypass the blood-brain barrier and correct defects of the central nervous system in DM1. This review describes the evolution of the chemical design of antisense oligonucleotides targeting CUG-expanded mRNAs and how recent advances in the field may be game-changing by forwarding laboratory findings into clinical research and treatments for DM1 and other microsatellite diseases.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Siham Ait Benichou
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
| | - Dominic Jauvin
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Science University, New York, NY 11203, USA
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Mohamed Chahine
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Alhamadani F, Zhang K, Parikh R, Wu H, Rasmussen TP, Bahal R, Zhong XB, Manautou JE. Adverse Drug Reactions and Toxicity of the Food and Drug Administration-Approved Antisense Oligonucleotide Drugs. Drug Metab Dispos 2022; 50:879-887. [PMID: 35221289 PMCID: PMC11022857 DOI: 10.1124/dmd.121.000418] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/14/2022] [Indexed: 04/19/2024] Open
Abstract
The market for large molecule biologic drugs has grown rapidly, including antisense oligonucleotide (ASO) drugs. ASO drugs work as single-stranded synthetic oligonucleotides that reduce production or alter functions of disease-causing proteins through various mechanisms, such as mRNA degradation, exon skipping, and ASO-protein interactions. Since the first ASO drug, fomivirsen, was approved in 1998, the U.S. Food and Drug Administration (FDA) has approved 10 ASO drugs to date. Although ASO drugs are efficacious in treating some diseases that are untargetable by small-molecule chemical drugs, concerns on adverse drug reactions (ADRs) and toxicity cannot be ignored. Illustrative of this, mipomersen was recently taken off the market due to its hepatotoxicity risk. This paper reviews ADRs and toxicity from FDA drug labeling, preclinical studies, clinical trials, and postmarketing real-world studies on the 10 FDA-approved ASO drugs, including fomivirsen and pegaptanib, mipomersen, nusinersen, inotersen, defibrotide, eteplirsen, golodirsen, viltolarsen, and casimersen. Unique and common ADRs and toxicity for each ASO drug are summarized here. The risk of developing hepatotoxicity, kidney toxicity, and hypersensitivity reactions co-exists for multiple ASO drugs. Special precautions need to be in place when certain ASO drugs are administrated. Further discussion is extended on studying the mechanisms of ADRs and toxicity of these drugs, evaluating the existing physiologic and pathologic states of patients, optimizing the dose and route of administration, and formulating personalized treatment plans to improve the clinical utility of FDA-approved ASO drugs and discovery and development of new ASO drugs with reduced ADRs. SIGNIFICANCE STATEMENT: The current review provides a comprehensive analysis of unique and common ADRs and the toxicity of FDA-approved ASO drugs. The information can help better manage the risk of severe hepatotoxicity, kidney toxicity, and hypersensitivity reactions in the usage of currently approved ASO drugs and the discovery and development of new and safer ASO drugs.
Collapse
Affiliation(s)
- Feryal Alhamadani
- Department of Pharmaceutical Sciences, School of Pharmacy (F.A., K.Z., H.W., T.P.R., R.B., X.Z., J.E.M.), and Department of Physiology and Neurobiology (R.P.), University of Connecticut, Storrs, Connecticut
| | - Kristy Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy (F.A., K.Z., H.W., T.P.R., R.B., X.Z., J.E.M.), and Department of Physiology and Neurobiology (R.P.), University of Connecticut, Storrs, Connecticut
| | - Rajvi Parikh
- Department of Pharmaceutical Sciences, School of Pharmacy (F.A., K.Z., H.W., T.P.R., R.B., X.Z., J.E.M.), and Department of Physiology and Neurobiology (R.P.), University of Connecticut, Storrs, Connecticut
| | - Hangyu Wu
- Department of Pharmaceutical Sciences, School of Pharmacy (F.A., K.Z., H.W., T.P.R., R.B., X.Z., J.E.M.), and Department of Physiology and Neurobiology (R.P.), University of Connecticut, Storrs, Connecticut
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy (F.A., K.Z., H.W., T.P.R., R.B., X.Z., J.E.M.), and Department of Physiology and Neurobiology (R.P.), University of Connecticut, Storrs, Connecticut
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy (F.A., K.Z., H.W., T.P.R., R.B., X.Z., J.E.M.), and Department of Physiology and Neurobiology (R.P.), University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy (F.A., K.Z., H.W., T.P.R., R.B., X.Z., J.E.M.), and Department of Physiology and Neurobiology (R.P.), University of Connecticut, Storrs, Connecticut
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy (F.A., K.Z., H.W., T.P.R., R.B., X.Z., J.E.M.), and Department of Physiology and Neurobiology (R.P.), University of Connecticut, Storrs, Connecticut
| |
Collapse
|
3
|
Aslesh T, Yokota T. Restoring SMN Expression: An Overview of the Therapeutic Developments for the Treatment of Spinal Muscular Atrophy. Cells 2022; 11:417. [PMID: 35159227 PMCID: PMC8834523 DOI: 10.3390/cells11030417] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder and one of the most common genetic causes of infant death. It is characterized by progressive weakness of the muscles, loss of ambulation, and death from respiratory complications. SMA is caused by the homozygous deletion or mutations in the survival of the motor neuron 1 (SMN1) gene. Humans, however, have a nearly identical copy of SMN1 known as the SMN2 gene. The severity of the disease correlates inversely with the number of SMN2 copies present. SMN2 cannot completely compensate for the loss of SMN1 in SMA patients because it can produce only a fraction of functional SMN protein. SMN protein is ubiquitously expressed in the body and has a variety of roles ranging from assembling the spliceosomal machinery, autophagy, RNA metabolism, signal transduction, cellular homeostasis, DNA repair, and recombination. Motor neurons in the anterior horn of the spinal cord are extremely susceptible to the loss of SMN protein, with the reason still being unclear. Due to the ability of the SMN2 gene to produce small amounts of functional SMN, two FDA-approved treatment strategies, including an antisense oligonucleotide (AON) nusinersen and small-molecule risdiplam, target SMN2 to produce more functional SMN. On the other hand, Onasemnogene abeparvovec (brand name Zolgensma) is an FDA-approved adeno-associated vector 9-mediated gene replacement therapy that can deliver a copy of the human SMN1. In this review, we summarize the SMA etiology, the role of SMN, and discuss the challenges of the therapies that are approved for SMA treatment.
Collapse
Affiliation(s)
- Tejal Aslesh
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E1, Canada;
| | - Toshifumi Yokota
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E1, Canada;
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E1, Canada
- The Friends of Garret Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8812 112 St., Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
4
|
Jablonka S, Hennlein L, Sendtner M. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurol Res Pract 2022; 4:2. [PMID: 34983696 PMCID: PMC8725368 DOI: 10.1186/s42466-021-00162-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Major efforts have been made in the last decade to develop and improve therapies for proximal spinal muscular atrophy (SMA). The introduction of Nusinersen/Spinraza™ as an antisense oligonucleotide therapy, Onasemnogene abeparvovec/Zolgensma™ as an AAV9-based gene therapy and Risdiplam/Evrysdi™ as a small molecule modifier of pre-mRNA splicing have set new standards for interference with neurodegeneration. MAIN BODY Therapies for SMA are designed to interfere with the cellular basis of the disease by modifying pre-mRNA splicing and enhancing expression of the Survival Motor Neuron (SMN) protein, which is only expressed at low levels in this disorder. The corresponding strategies also can be applied to other disease mechanisms caused by loss of function or toxic gain of function mutations. The development of therapies for SMA was based on the use of cell culture systems and mouse models, as well as innovative clinical trials that included readouts that had originally been introduced and optimized in preclinical studies. This is summarized in the first part of this review. The second part discusses current developments and perspectives for amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease, as well as the obstacles that need to be overcome to introduce RNA-based therapies and gene therapies for these disorders. CONCLUSION RNA-based therapies offer chances for therapy development of complex neurodegenerative disorders such as amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease. The experiences made with these new drugs for SMA, and also the experiences in AAV gene therapies could help to broaden the spectrum of current approaches to interfere with pathophysiological mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| |
Collapse
|
5
|
Ramdas S, Servais L. New treatments in spinal muscular atrophy: an overview of currently available data. Expert Opin Pharmacother 2020; 21:307-315. [PMID: 31973611 DOI: 10.1080/14656566.2019.1704732] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Introduction: Spinal muscular atrophy (SMA) is one of the most common inherited neuromuscular disorders. It causes progressive muscle weakness and results in significant disability. Until recently, there were no drugs available for the treatment of SMA. Several phase 1-3 studies, including three double-blind randomized placebo-controlled studies have demonstrated the efficacy of disease-modifying approaches including gene replacement therapy, antisense oligonucleotides, and splicing modifiers.Areas covered: This article covers the publically available data on therapeutic strategies that address the underlying cause of SMA and clinical data available on approved treatments and drugs in the pipeline.Expert opinion: The newer therapeutic options in SMA have a good safety profile and deliver a therapeutic benefit in most patients. It is essential that the recommended standards of care are delivered along with the drugs for the best outcomes. No biomarkers to distinguish responders from non-responders are available; it is important that biomarkers be identified. Early treatment is essential for the maximum efficacy of the newly available treatments.
Collapse
Affiliation(s)
- Sithara Ramdas
- MDUK Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Laurent Servais
- MDUK Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
| |
Collapse
|